In-core computation of distance distributions and geometric centralities with HyperBall: A hundred billion nodes and beyond

Paolo Boldi, Sebastiano Vigna
Laboratory for Web Algorithmics (LAW)
Università degli Studi di Milano, Italy
Setup
Setup

- You have a very large graph (social, web)
Setup

- You have a very large graph (social, web)
- You want to understand something of its *global* structure (not triangles/degree distribution/etc.)
Setup

- You have a very large graph (social, web)
- You want to understand something of its global structure (not triangles/degree distribution/etc.)
- First candidate: distance distribution (and, in the directed case, the number of reachable pairs)
Setup

✦ You have a very large graph (social, web)
✦ You want to understand something of its global structure (not triangles/degree distribution/etc.)
✦ First candidate: distance distribution (and, in the directed case, the number of reachable pairs)
✦ You want to understand which nodes are important in some sense
For real
For real

- First paper at WWW 2011 (with Marco Rosa)
For real

- First paper at WWW 2011 (with Marco Rosa)
- Open-source software part of the WebGraph framework
For real

- First paper at WWW 2011 (with Marco Rosa)
- Open-source software part of the WebGraph framework
- Run on Facebook (whole graph) using just a workstation (72GiB RAM)
For real

✦ First paper at WWW 2011 (with Marco Rosa)

✦ Open-source software part of the WebGraph framework

✦ Run on Facebook (whole graph) using just a workstation (72GiB RAM)
Geometric Centralities
Geometric Centralities

- Closeness (Bavelas 1946):
Geometric Centralities

- Closeness (Bavelas 1946): \(\frac{1}{\sum_y d(y, x)} \)
Geometric Centralities

- Closeness (Bavelas 1946): \(\frac{1}{\sum_y d(y, x)} \)
- The summation is over all \(y \) such that \(d(y, x) < \infty \)
Geometric Centralities

- Closeness (Bavelas 1946): \(\frac{1}{\sum_y d(y, x)} \)
- The summation is over all \(y \) such that \(d(y, x) < \infty \)
- Harmonic centrality:
Geometric Centralities

- Closeness (Bavelas 1946): \(\sum_y \frac{1}{d(y, x)} \)
 - The summation is over all \(y \) such that \(d(y, x) < \infty \)
- Harmonic centrality: \(\sum_{y \neq x} \frac{1}{d(y, x)} \)
Hollywood: PageRank

Ron Jeremy Adolf Hitler Lloyd Kaufman George W. Bush

Ronald Reagan Bill Clinton Martin Sheen Debbie Rochon
Hollywood: Harmonic

George Clooney
Samuel Jackson
Sharon Stone
Tom Hanks

Martin Sheen
Dennis Hopper
Antonio Banderas
Madonna
Intermediate step
Intermediate step

- For each node, we compute in sequence the number of nodes at distance exactly t
Intermediate step

- For each node, we compute in sequence the number of nodes at distance exactly t
- Adding up over all nodes, we get the distance distribution (modulo normalization)
Intermediate step

- For each node, we compute in sequence the number of nodes at distance exactly t
- Adding up over all nodes, we get the distance distribution (modulo normalization)
- Centralities can be rewritten, e.g., harmonic:
Intermediate step

- For each node, we compute in sequence the number of nodes at distance exactly t
- Adding up over all nodes, we get the distance distribution (modulo normalization)
- Centralalities can be rewritten, e.g., harmonic:

$$\sum_{t>0} \frac{1}{t} \left| \{ y \mid d(y, x) = t \} \right|$$
How do you compute it?
How do you compute it?

- Many many breadth-first visits: $O(mn)$, needs direct access
How do you compute it?

- Many many breadth-first visits: \(O(mn) \), needs direct access
- Sampling: a fraction of breadth-first visits, very unreliable results on graphs that are not strongly connected, needs direct access
How do you compute it?

- Many many breadth-first visits: $O(mn)$, needs direct access
- Sampling: a fraction of breadth-first visits, very unreliable results on graphs that are not strongly connected, needs direct access
- Edith Cohen’s [JCSS 1997] size estimation framework: very powerful but does not scale or parallelize really well, needs direct access
Alternative: Diffusion
Alternative: Diffusion

- Basic idea: Palmer et. al, KDD ’02
Alternative: Diffusion

- Basic idea: Palmer et. al, KDD ’02
- Let $B_t(x)$ be the ball of radius t around x (nodes at distance at most t from x)
Alternative: Diffusion

- Basic idea: Palmer et. al, KDD ’02
- Let $B_t(x)$ be the ball of radius t around x (nodes at distance at most t from x)
- Clearly $B_0(x) = \{x\}$
Alternative: Diffusion

- Basic idea: Palmer et. al, KDD ’02
- Let $B_t(x)$ be the ball of radius t around x (nodes at distance at most t from x)
- Clearly $B_0(x) = \{x\}$
- But also $B_{t+1}(x) = \bigcup_{x \rightarrow y} B_t(y) \cup \{x\}$
Alternative: Diffusion

- Basic idea: Palmer et. al, KDD ’02
- Let $B_t(x)$ be the ball of radius t around x (nodes at distance at most t from x)
- Clearly $B_0(x)=\{x\}$
- But also $B_{t+1}(x) = \bigcup_{x \rightarrow y} B_t(y) \bigcup \{x\}$
- So we can compute balls by enumerating the arcs $x \rightarrow y$ and performing set unions
A round of updates
Another round...
Another round...

<p>| | | | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>☺</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
Another round...
Another round...
Another round...
Another round...
Another round...
Another round...
Easy but expensive
Easy but expensive

- Each set uses linear space; overall quadratic
Easy but expensive

- Each set uses linear space; overall quadratic
- Impossible!
Easy but expensive

✦ Each set uses linear space; overall quadratic
✦ Impossible!
✦ But what if we use *approximate* sets?
Easy but expensive

- Each set uses linear space; overall quadratic
- Impossible!
- But what if we use approximate sets?
- Idea: use probabilistic counters, which represent sets but answer just to “size?” questions
Easy but expensive

✦ Each set uses linear space; overall quadratic
✦ Impossible!
✦ But what if we use approximate sets?
✦ Idea: use probabilistic counters, which represent sets but answer just to “size?” questions
✦ Very small!
Main trick
Main trick

- Choose an approximate set such that unions can be computed quickly
Main trick

✦ Choose an approximate set such that unions can be computed quickly

✦ ANF [Palmer et al., KDD ’02] uses Martin–Flajolet (MF) counters (log \(n + c \) space)
Main trick

✦ Choose an approximate set such that unions can be computed quickly

✦ ANF [Palmer et al., KDD ’02] uses Martin–Flajolet (MF) counters (\(\log n + c\) space)

✦ We use HyperLogLog counters [Flajolet et al., 2007] (\(\log \log n\) space)
Main trick

- Choose an approximate set such that unions can be computed quickly

- ANF [Palmer et al., KDD ’02] uses Martin–Flajolet (MF) counters ($\log n + c$ space)

- We use HyperLogLog counters [Flajolet et al., 2007] ($\log \log n$ space)

- MF counters can be combined with an OR
Main trick

✦ Choose an approximate set such that unions can be computed quickly
✦ ANF [Palmer et al., KDD ’02] uses Martin–Flajolet (MF) counters (log n + c space)
✦ We use HyperLogLog counters [Flajolet et al., 2007] (log log n space)
✦ MF counters can be combined with an OR
✦ We use broadword programming to combine HyperLogLog counters quickly!
HyperLogLog counters
HyperLogLog counters

- Instead of actually counting, we observe a statistical feature of a set (think stream) of elements
HyperLogLog counters

- Instead of actually counting, we observe a statistical feature of a set (think stream) of elements.
- The feature: the number of trailing zeroes of the value of a very good hash function.
HyperLogLog counters

- Instead of actually counting, we observe a statistical feature of a set (think stream) of elements
- The feature: the number of trailing zeroes of the value of a very good hash function
- We keep track of the maximum m (log log n bits!)
HyperLogLog counters

- Instead of actually counting, we observe a statistical feature of a set (think stream) of elements
- The feature: the number of trailing zeroes of the value of a very good hash function
- We keep track of the maximum m (log log n bits!)
- The number of distinct elements $\propto 2^m$
HyperLogLog counters

- Instead of actually counting, we observe a statistical feature of a set (think stream) of elements.
- The feature: the number of trailing zeroes of the value of a very good hash function.
- We keep track of the maximum m \((\log \log n)\) bits!
- The number of distinct elements $\propto 2^m$
- **Important:** the counter of stream AB is simply
Many, many counters...
Many, many counters...

- To increase confidence, we need several counters (usually 2^b, $b \geq 4$) and take their harmonic mean
Many, many counters...

- To increase confidence, we need several counters (usually 2^b, $b \geq 4$) and take their harmonic mean
- Thus each set is represented by a list of small (typically 5-bit) counters (unlikely >6 bits!)
Many, many counters...

- To increase confidence, we need *several* counters (usually 2^b, $b \geq 4$) and take their harmonic mean.

- Thus each set is represented by a list of small (typically 5-bit) counters (unlikely >6 bits!)

- To compute the union of two sets these must be maximized one-by-one
Many, many counters...

- To increase confidence, we need several counters (usually 2^b, $b \geq 4$) and take their harmonic mean

- Thus each set is represented by a list of small (typically 5-bit) counters (unlikely >6 bits!)

- To compute the union of two sets these must be maximized one-by-one

- Extracting by shifts, maximizing and putting back by shifts is unbearably slow
Many, many counters...

- To increase confidence, we need several counters (usually 2^b, $b \geq 4$) and take their harmonic mean.
- Thus each set is represented by a list of small (typically 5-bit) counters (unlikely >6 bits!).
- To compute the union of two sets these must be maximized one-by-one.
- Extracting by shifts, maximizing and putting back by shifts is unbearably slow.
8 bits Broadword!

<table>
<thead>
<tr>
<th>7</th>
<th>0</th>
<th>2</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>3</td>
<td>2</td>
<td>5</td>
</tr>
</tbody>
</table>
Broadword!

8 bits

<table>
<thead>
<tr>
<th>1</th>
<th>7</th>
<th>1</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>1</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>5</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>5</td>
</tr>
</tbody>
</table>
8 bits Broadword!

```
| 1 | 7 | 1 | 0 | 1 | 2 | 1 | 1 |
```

```
| 0 | 5 | 0 | 3 | 0 | 2 | 0 | 5 |
```

=
8 bits

\[
\begin{array}{cccccc}
1 & 7 & 1 & 0 & 1 & 2 \\
\end{array}
- \\
\begin{array}{cccccc}
0 & 5 & 0 & 3 & 0 & 2 \\
\end{array}
= \\
\begin{array}{cccccc}
2 & 125 & 0 & 124 \\
\end{array}
\]
8 bits Broadword!

\[
\begin{array}{ccccccc}
1 & 7 & 1 & 0 & 1 & 2 & 1 & 1 \\
0 & 5 & 0 & 3 & 0 & 2 & 0 & 5 \\
1 & 2 & 0 & 125 & 1 & 0 & 0 & 124
\end{array}
\]
8 bits Broadword!

\[
\begin{array}{ccccccc}
1 & 7 & 1 & 0 & 1 & 2 & 1 & 1 \\
\end{array}
\]

\[
\begin{array}{ccccccc}
0 & 5 & 0 & 3 & 0 & 2 & 0 & 5 \\
\end{array}
\]

\[
\begin{array}{ccccccc}
1 & 2 & 0 & 125 & 1 & 0 & 0 & 124 \\
\end{array}
\]

\[
\begin{array}{ccccccc}
1 & 1 & 1 & 1 & 1 & 1 \\
\end{array}
\]
8 bits Broadword!

\[
\begin{array}{cccccccc}
1 & 7 & 1 & 0 & 1 & 2 & 1 & 1 \\
\end{array}
\]

\[
\begin{array}{cccccccc}
0 & 5 & 0 & 3 & 0 & 2 & 0 & 5 \\
\end{array}
\]

\[
\begin{array}{cccccccc}
2 & 125 & 0 & 124 \\
\end{array}
\]

\[
\begin{array}{cccccccc}
1 & 1 & 1 & 0 & 1 & 1 & 1 & 0 \\
\end{array}
\]
8 bits Broadword!

<table>
<thead>
<tr>
<th>1</th>
<th>7</th>
<th>1</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>1</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>5</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>5</td>
</tr>
</tbody>
</table>

=

<table>
<thead>
<tr>
<th>2</th>
<th>125</th>
<th>0</th>
<th>124</th>
</tr>
</thead>
</table>

| 1 | 1 | 1 | 0 | 1 | 1 | 1 | 0 |

=

| 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 |

-
8 bits Broadword!

\[
\begin{array}{cccccccc}
1 & 7 & 1 & 0 & 1 & 2 & 1 & 1 \\
0 & 5 & 0 & 3 & 0 & 2 & 0 & 5 \\
\equiv & - & - & - & - & - & - & - \\
2 & 125 & 0 & 124 \\
1 & 1 & 1 & 0 & 1 & 1 & 1 & 0 \\
0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\
\equiv & - & - & - & - & - & - & - & - \\
\end{array}
\]
8 bits

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>7</th>
<th>1</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>1</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>125</td>
<td>0</td>
<td>124</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>127</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>127</td>
</tr>
</tbody>
</table>
8 bits Broadword!

<p>| | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>5</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>125</td>
<td>0</td>
<td>124</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>127</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>127</td>
<td></td>
</tr>
</tbody>
</table>
8 bits Broadword!

<table>
<thead>
<tr>
<th>1</th>
<th>7</th>
<th>1</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>1</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>5</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>5</td>
</tr>
</tbody>
</table>

=

<table>
<thead>
<tr>
<th>2</th>
<th>125</th>
<th>0</th>
<th>124</th>
</tr>
</thead>
</table>

| 1 | 1 | 1 | 0 | 1 | 1 | 1 | 0 |

=

| 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 |

=

| 1 | 0 | 0 | 127 | 1 | 0 | 0 | 127 |
Broadword!

8 bits

<table>
<thead>
<tr>
<th>1</th>
<th>7</th>
<th>1</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>1</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>5</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>5</td>
</tr>
</tbody>
</table>

=

| 2 | 125 | 0 | 124 |

=

| 1 | 1 | 0 | 1 | 1 | 1 | 1 | 0 |

=

| 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 |

=

| 1 | 0 | 0 | 127 | 1 | 0 | 0 | 127 |
Broadword!

8 bits

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>7</th>
<th>1</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>1</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>5</td>
</tr>
</tbody>
</table>

=

<table>
<thead>
<tr>
<th></th>
<th>2</th>
<th>125</th>
<th>0</th>
<th>124</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

=

| | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 1 |

=

| | 1 | 0 | 0 | 127 | 1 | 0 | 0 | 127 |
Other ideas
Other ideas

✦ We keep track of modifications: we do not maximize with unmodified counters
Other ideas

- We keep track of modifications: we do not maximize with unmodified counters

- Systolic computation: each modified set signals back to predecessors that something is going to happen (much fewer updates—$O(m \log n)$ in expectation! [Cohen])
Other ideas

- We keep track of modifications: we do not maximize with unmodified counters.

- Systolic computation: each modified set signals back to predecessors that something is going to happen (much fewer updates—\(O(m \log n)\) in expectation! [Cohen])

- Multicore exploitation by decomposition: a task is updating just a batch of counters whose overall outdegree is predicted using the cumulative outdegree distribution (almost linear scaling)
Footprint
Footprint

- Scalability: a minimum of 20 bytes per node
Footprint

- Scalability: a minimum of 20 bytes per node
- On a 2TiB machine, 100 billion nodes
Footprint

- Scalability: a minimum of 20 bytes per node
- On a 2TiB machine, 100 billion nodes
- Graph structure is accessed by memory-mapping in a compressed form (WebGraph)
Footprint

- Scalability: a minimum of 20 bytes per node
- On a 2TiB machine, 100 billion nodes
- Graph structure is accessed by memory-mapping in a compressed form (WebGraph)
- Pointer to the graph are store using quasi-succinct lists (Elias-Fano representation)
Performance
Performance

- On a 177K nodes / 2B arcs graph, RSD \(\sim 14\% \):
Performance

- On a 177K nodes / 2B arcs graph, RSD ~14%:
 - Hadoop: 2875s per iteration [Kang, Papadimitriou, Sun and H. Tong, 2011]
Performance

- On a 177K nodes / 2B arcs graph, RSD ~14%:
 - Hadoop: 2875s per iteration [Kang, Papadimitriou, Sun and H. Tong, 2011]
 - HyperBall on this laptop: 70s per iteration
Performance

- On a 177K nodes / 2B arcs graph, RSD ~14%:
 - Hadoop: 2875s per iteration [Kang, Papadimitriou, Sun and H. Tong, 2011]
 - HyperBall on this laptop: 70s per iteration
 - On a 32-core workstation: 23s per iteration
Performance

- On a 177K nodes / 2B arcs graph, RSD ~14%:
 - Hadoop: 2875s per iteration [Kang, Papadimitriou, Sun and H. Tong, 2011]
 - HyperBall on this laptop: 70s per iteration
 - On a 32-core workstation: 23s per iteration
 - On ClueWeb09 (4.8G nodes, 8G arcs) on a 40-core workstation: 141m (avg. 40s per iteration)
Convergence

Harmonic centrality

![Diagram showing relative error against number of runs with box plots and a trend line.](image-url)
Future Work
Future Work

- Perfect and natural fit for distributed computation (GraphLab, Pregel, etc.)
Future Work

- Perfect and natural fit for distributed computation (GraphLab, Pregel, etc.)
- Apply the same computational framework to other size estimators
Future Work

✦ Perfect and natural fit for distributed computation (GraphLab, Pregel, etc.)
✦ Apply the same computational framework to other size estimators
✦ Edith Cohen new HIP estimators for HyperLogLog counters might work
Future Work

✦ Perfect and natural fit for distributed computation (GraphLab, Pregel, etc.)
✦ Apply the same computational framework to other size estimators
✦ Edith Cohen new HIP estimators for HyperLogLog counters might work
✦ http://webgraph.di.unimi.it/software
Future Work

✦ Perfect and natural fit for distributed computation (GraphLab, Pregel, etc.)

✦ Apply the same computational framework to other size estimators

✦ Edith Cohen new HIP estimators for HyperLogLog counters might work

✦ http://webgraph.di.unimi.it/ ➟ software

✦ http://law.di.unimi.it/ ➟ datasets