Massive Experiments and Observational Studies: A Linearithmic Algorithm for Blocking/Matching/Clustering

Jasjeet S. Sekhon

UC Berkeley

June 21, 2016

Massive Experiments

- Measuring human activity has generated massive datasets with granular information that can be used for personalization of treatments, creating markets, modeling behavior
- Many inferential issues: e.g., unknown sampling frames, heterogeneity, targeting optimal treatments, many false positives
- Some traditional experimental design methods have become computationally infeasible—e.g., blocking
- Blocking: create strata and then randomize within strata
- Polynomial time solution not quick enough. Linearithmic is survivable.
- Algorithm can also be used for post-stratification, matching, and clustering

Big Data does not solve key inferential problems

- For experiments:
 - Need to adjust experiments to examine sub-groups and to increase power: With Great Power Comes Small Effect Sizes: 1e-9
 - Issues of randomization bias: poor external validity
- For observational studies:
 - Covariate balance is not a function of the sample size.
 - $\circ\,$ The fundamental problem of causal inference is not solved just by a large N

A New Blocking/Matching/Clustering Method

The method minimizes the pair-wise Maximum Within-Block Distance: λ

- Any valid distance metric (must satisfy the triangle inequality)
- Ensures good covariate balance by design
- Works for any number of treatments and any minimum number of observations per block
- It is fast: $O(n \log n)$ expected time
- It is memory efficient: O(n) storage
- Approximately optimal: \leq 4 \times λ
- Special cases
 - (1) with one covariate: λ
 - (2) with two covariates: \leq 2 \times λ

Blocking, Matching, Clustering is a NP hard problem in general

- Optimal Multivariate Matching Before Randomization
 - No efficient way to extend approach to more than two treatment categories
 - Even for two treatment categories, doesn't scale well
- Matched-pairs blocking: Pair "most-similar" units together. For each pair, randomly assign one unit to treatment, one to control
 - Natural clustering in the data ignored
 - Cannot estimate conditional variances
 - Difficulty with treatment effect heterogeneity

Threshold blocking: relaxing the block structure

Theorem

For all samples, all objective functions and all desired block sizes, the optimal threshold blocking is always weakly better than the optimal fixed-sized blocking.

Proof: interpret blocking as an non-linear integer programming problem.
The search set of threshold blocking is a superset of fixed-sized blocking

But there are problems

- Problem 1: the theorem is for the objective function used to construct the blocks
 - Might not be the quantity of true interest
- Problem 2: larger search set \Rightarrow much harder optimization problem

No help to us if we cannot find the optimum

# units	Fixed-sized	Threshold
8	105	715
10	945	17,722
12	10,395	580,317
14	135,135	24,011,157
16	2,027,025	1,216,070,380
18	34,459,425	73,600,798,037
20	654.729.075	$5.2 imes 10^{12}$

Table: =	∦ uni	que blo	ockings	(block	size	=	2))
----------	-------	---------	---------	--------	------	---	----	---

Memory usage in gigabytes

Input:

- Units' covariates
- Distance metric
- Minimum block size: k = 2

- A undirected complete graph with distances as edge weights
- 2 Find (k-1)-nearest neighbor graph
- ③ Construct the second power of NNG
- ④ Find a maximal independent set (seeds)
- Form blocks with the seeds and their neighbors in NNG
- Assign remaining units to a block containing any neighbor

Input:

- Units' covariates
- Distance metric
- Minimum block size: k = 2

- A undirected complete graph with distances as edge weights
- Pind (k 1)-nearest neighbor graph
- ③ Construct the second power of NNG
- ④ Find a maximal independent set (seeds)
- Form blocks with the seeds and their neighbors in NNG
- Assign remaining units to a block containing any neighbor

Input:

- Units' covariates
- Distance metric
- Minimum block size: k = 2

- A undirected complete graph with distances as edge weights
- 2 Find (k-1)-nearest neighbor graph
- ③ Construct the second power of NNG
- ④ Find a maximal independent set (seeds)
- Form blocks with the seeds and their neighbors in NNG
- Assign remaining units to a block containing any neighbor

Input:

- Units' covariates
- Distance metric
- Minimum block size: k = 2

- A undirected complete graph with distances as edge weights
- 2 Find (k-1)-nearest neighbor graph
- ③ Construct the second power of NNG
- ④ Find a maximal independent set (seeds)
- Form blocks with the seeds and their neighbors in NNG
- Assign remaining units to a block containing any neighbor

Input:

- Units' covariates
- Distance metric
- Minimum block size: k = 2

- A undirected complete graph with distances as edge weights
- ⁽²⁾ Find (k-1)-nearest neighbor graph
- ③ Construct the second power of NNG
- Ind a maximal independent set (seeds)
- Form blocks with the seeds and their neighbors in NNG
- Assign remaining units to a block containing any neighbor

Input:

- Units' covariates
- Distance metric
- Minimum block size: k = 2

- A undirected complete graph with distances as edge weights
- 2 Find (k-1)-nearest neighbor graph
- ③ Construct the second power of NNG
- ④ Find a maximal independent set (seeds)
- Form blocks with the seeds and their neighbors in NNG
- Assign remaining units to a block containing any neighbor

Input:

- Units' covariates
- Distance metric
- Minimum block size: k = 2

- A undirected complete graph with distances as edge weights
- 2 Find (k-1)-nearest neighbor graph
- ③ Construct the second power of NNG
- ④ Find a maximal independent set (seeds)
- Form blocks with the seeds and their neighbors in NNG
- Assign remaining units to a block containing any neighbor

Input:

- Units' covariates
- Distance metric
- Minimum block size: k = 2

Procedure:

- A undirected complete graph with distances as edge weights
- 2 Find (k-1)-nearest neighbor graph
- ③ Construct the second power of NNG
- ④ Find a maximal independent set (seeds)
- Form blocks with the seeds and their neighbors in NNG

Assign remaining units to a block containing any neighbor

Input:

- Units' covariates
- Distance metric
- Minimum block size: k = 2

- A undirected complete graph with distances as edge weights
- ⁽²⁾ Find (k-1)-nearest neighbor graph
- ③ Construct the second power of NNG
- ④ Find a maximal independent set (seeds)
- Form blocks with the seeds and their neighbors in NNG
- Assign remaining units to a block containing any neighbor

Properties

- Unless P = NP, no polynomial-time (2ϵ) approximation algorithm exists
- Validity: the blocking algorithm produces a threshold blocking: $\mathbf{b}_{alg} \in \mathbf{B}_k$
- Approximate optimality: blocking algorithm is a 4-approximation algorithm:

$$\max_{ij\in E(\mathbf{b}_{alg})}c_{ij}\leq 4\lambda.$$

• Local approximate optimality: Let $\mathbf{b}_{sub} \subseteq \mathbf{b}_{alg}$ be any subset of blocks from a blocking constructed by the algorithm. Define $V_{sub} = \bigcup_{V_x \in \mathbf{b}_{sub}} V_x$ as the set of all vertices contained in the blocks of \mathbf{b}_{sub} . Let λ_{sub} denote the maximum edge cost in an optimal blocking of V_{sub} . The subset of blocks is an approximately optimal blocking of V_{sub} :

$$\max_{ij\in E(\mathbf{b}_{sub})}c_{ij}\leq 4\lambda_{sub}.$$

- Closer to clustering than traditional blocking/matching methods
- Key property is obtained indirectly: we are not directly optimizing the objective function
- Fast algorithm:
 - NNG plus $O(d^0 kn)$ time and $O(d^0 kn)$ space
 - K-d trees NN: $O(2^d kn \log n)$ expected time, $O(2^d kn^2)$ worst time, and O(kn) storage
 - Compare with bipartite, network flow methods:
 - $\, \circ \,$ e.g., Derigs: $\mathit{O}(n^3 \, \log n + dn^2)$ worst time and $\mathit{O}(d^0 n^2)$ space
- A key preprocessing step: feature selection

- The usual assumption: selection on observables
- Covariate balance is not a function of the sample size
- $\Rightarrow\,$ We need matching methods also in large samples

- Matching is a non-parametric method that creates balanced samples:
 - Construct matched groups (MG) of similar units
 - Re-weight units so that each treatment condition is equally "big" in each MG
 - $\Rightarrow\,$ As the MGs are approximately balanced, so will the re-weighted sample

- Fast method: Greedy NN-matching without replacement.
 - Sequentially matches each treated unit to its nearest unmatched control to form pairs.

- Well-performing method: Optimal full matching.
 - Finds the best matching subject to only the design constraints.

What is generalized full matching (GFM)?

- GFM extends full matching to a more general setting.
- In a study with two treatment conditions, a full matching satisfies:
 - 1 Each unit must be assigned to a matched group.
 - ② Each group must contain at least one treated and one control.

What is generalized full matching (GFM)?

- GFM extends full matching to a more general setting.
- In a study with two treatment conditions, a full matching satisfies:
 - Each unit must be assigned to a matched group.
 - ② Each group must contain at least one treated and one control.
- In a study with k treatment conditions, a **GFM** satisfies:
 - 1 Each unit must be assigned to a matched group.
 - 2 Each group must contain at least τ_i units for each treatment $i \in \{1, \dots, k\}$.
 - 3 Each group must contain at least τ_A units in total.

Matching as optimization

Objective function

• Three properties of a good matching method:

- Constructs matched groups with units that are similar to each other.
- Groups conform to a desired structure (e.g., one unit of each treatment).
- There is a way to construct the groups.

Algorithm

Constraints

 x_1

Matching algorithm

Matching algorithm

- Follows in a similar way to the blocking/matching case
- One selects the minimum number of observations in a cluster; not the number of clusters
- Allows one to use clustering as a data reduction step for further analysis—e.g., by ML estimation methods

- Existing methods don't work well in large samples
- Applied used created hacked heuristic algorithms, which have no proven properties and often have worse computational performance
- Have ignored estimation issues in this talk: in practice they are important

Joint Work with Michael J. Higgins and Fredrick Sävje

