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Massive Experiments

Measuring human activity has generated massive datasets with granular
information that can be used for personalization of treatments, creating
markets, modeling behavior

Many inferential issues: e.g., unknown sampling frames, heterogeneity,
targeting optimal treatments, many false positives

Some traditional experimental design methods have become computationally
infeasible—e.g., blocking

Blocking: create strata and then randomize within strata

Polynomial time solution not quick enough. Linearithmic is survivable.

Algorithm can also be used for post-stratification, matching, and clustering
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Causal inference in large samples

Big Data does not solve key inferential problems

For experiments:

Need to adjust experiments to examine sub-groups and to increase power:
With Great Power Comes Small Effect Sizes: 1e-9

Issues of randomization bias: poor external validity

For observational studies:

Covariate balance is not a function of the sample size.

The fundamental problem of causal inference is not solved just by a large N
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A New Blocking/Matching/Clustering Method

The method minimizes the pair-wise Maximum Within-Block Distance: λ

Any valid distance metric (must satisfy the triangle inequality)

Ensures good covariate balance by design

Works for any number of treatments and any minimum number of
observations per block

It is fast: O(n log n) expected time

It is memory efficient: O(n) storage

Approximately optimal: ≤ 4× λ
Special cases

1 with one covariate: λ
2 with two covariates: ≤ 2× λ
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Some Current blocking approaches

Blocking, Matching, Clustering is a NP hard problem in general

Optimal Multivariate Matching Before Randomization

No efficient way to extend approach to more than two treatment categories
Even for two treatment categories, doesn’t scale well

Matched-pairs blocking: Pair “most-similar” units together. For each pair,
randomly assign one unit to treatment, one to control

Natural clustering in the data ignored
Cannot estimate conditional variances
Difficulty with treatment effect heterogeneity
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Threshold blocking: relaxing the block structure

Threshold blocking

x1

x2

Fixed-sized blocking

x1

x2
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An Advantage

Theorem

For all samples, all objective functions and all desired block sizes, the optimal
threshold blocking is always weakly better than the optimal fixed-sized blocking.

Proof: interpret blocking as an non-linear integer programming problem.

The search set of threshold blocking is a superset of fixed-sized blocking

Jasjeet S. Sekhon (UC Berkeley) Methods for Massive Experiments June 21, 2016 7 / 22



But there are problems

Problem 1: the theorem is for the objective function used to construct the
blocks

Might not be the quantity of true interest

Problem 2: larger search set ⇒ much harder optimization problem

No help to us if we cannot find the optimum

Table: # unique blockings (block size = 2)

# units Fixed-sized Threshold
8 105 715
10 945 17,722
12 10,395 580,317
14 135,135 24,011,157
16 2,027,025 1,216,070,380
18 34,459,425 73,600,798,037
20 654,729,075 5.2× 1012
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The AppOpt algorithm
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The AppOpt algorithm

Input:

Units’ covariates

Distance metric

Minimum block size: k = 2

Procedure:

1 A undirected complete graph with
distances as edge weights

2 Find (k − 1)-nearest neighbor graph

3 Construct the second power of NNG

4 Find a maximal independent set (seeds)

5 Form blocks with the seeds and their
neighbors in NNG

6 Assign remaining units to a block
containing any neighbor
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Properties

Unless P = NP, no polynomial-time (2− ε) approximation algorithm exists

Validity: the blocking algorithm produces a threshold blocking: balg ∈ Bk

Approximate optimality: blocking algorithm is a 4-approximation algorithm:

max
ij∈E(balg )

cij ≤ 4λ.

Local approximate optimality: Let bsub ⊆ balg be any subset of blocks from a
blocking constructed by the algorithm. Define Vsub =

⋃
Vx∈bsub

Vx as the set
of all vertices contained in the blocks of bsub. Let λsub denote the maximum
edge cost in an optimal blocking of Vsub. The subset of blocks is an
approximately optimal blocking of Vsub:

max
ij∈E(bsub)

cij ≤ 4λsub.
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Summary

Closer to clustering than traditional blocking/matching methods

Key property is obtained indirectly: we are not directly optimizing the
objective function

Fast algorithm:

NNG plus O(d0kn) time and O(d0kn) space
K-d trees NN: O(2dkn logn) expected time, O(2dkn2) worst time, and O(kn)
storage
Compare with bipartite, network flow methods:

e.g., Derigs: O(n3 logn + dn2) worst time and O(d0n2) space

A key preprocessing step: feature selection
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Observational Data

The usual assumption: selection on observables

Covariate balance is not a function of the sample size

⇒ We need matching methods also in large samples
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What is matching?

Matching is a non-parametric method that creates balanced samples:

Construct matched groups (MG) of similar units

Re-weight units so that each treatment condition is equally “big” in each MG

⇒ As the MGs are approximately balanced, so will the re-weighted sample
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Inspiration from two extremes

Fast method: Greedy NN-matching without replacement.

Sequentially matches each treated unit to its nearest unmatched control to
form pairs.

Well-performing method: Optimal full matching.

Finds the best matching subject to only the design constraints.
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What is generalized full matching (GFM)?

GFM extends full matching to a more general setting.

In a study with two treatment conditions, a full matching satisfies:

1 Each unit must be assigned to a matched group.

2 Each group must contain at least one treated and one control.

In a study with k treatment conditions, a GFM satisfies:

1 Each unit must be assigned to a matched group.

2 Each group must contain at least τi units for each treatment i ∈ {1, · · · , k}.
3 Each group must contain at least τA units in total.
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Matching as optimization

Three properties of a good matching method:

Constructs matched groups with units that are similar to each other.

Groups conform to a desired structure (e.g., one unit of each treatment).

There is a way to construct the groups.

Constraints

Objective function

Algorithm
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x1

x2

NN-matching without replacement

Variance

Bias

x1

x2

Full matching

Loading, please wait...
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Without replacement With replacement 1:k-matching Full matching
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Matching algorithm
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Clustering

Follows in a similar way to the blocking/matching case

One selects the minimum number of observations in a cluster; not the
number of clusters

Allows one to use clustering as a data reduction step for further
analysis—e.g., by ML estimation methods
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Summary

Existing methods don’t work well in large samples

Applied used created hacked heuristic algorithms, which have no proven
properties and often have worse computational performance

Have ignored estimation issues in this talk: in practice they are important
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