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Setup

• Large (sparse) network consisting of i =
1, . . . , N potentially connected agents

• Observe all ties in each of t = 0 , 1, 2, 3 pe-

riods

• D t denotes the period t adjacency matrix

Ð D ijt = 1 if agents i and j are connected

in period t and zero otherwise

Ð Ties are undirected: D ijt = D jit

Ð No self-ties: D iit = 0
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Clustering

• Real world networks exhibit substantial clus-

tering/transitivity in ties

• Transitivity indices often substantially ex-

ceed network densities

Transitivity Index =
3TT

TT S + 3 TT
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Homophily versus Transitivity

Two explanations for clustering:

• Homophily – ‘birds of a feather flock to-

gether’ (assortative mixing, community struc-

ture)

Ð sorting may be on both observed and

unobserved agent attributes

• (Structural) taste for ‘triadic closure’ – ‘a

friend of a friend is also my friend’
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Homophily versus Transitivity
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Link Formation

• Agents i and j form a link in periods t =
1, . . . , 3 according to the rule

D ijt = 1
!
!D ijt ! 1 + "R ijt ! 1 + A ij ! Uijt > 0

"

• Rijt =
# N

k=1 D ikt D jkt equals the number of

period t friends i and j have in common

• A ij = A ji is dyad-specific unobserved het-

erogeneity

• Uijt is iid across links and over time with

distribution function F ( u)
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Comments on model

• Model captures three key features of link

formation

1. State dependence – !

2. (Structural) taste for transitivity or ‘tri-

adic closure’ – "

3. (Time invariant) dyad-specific hetero-

geneity, A ij

(a) Homophily (Assortative Mixing)

(b) Degree heterogeneity (Graham, 2014)
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Comments on model (continued)

• Dyad-specific heterogeneity, A ij , admits many

specifications (cf., Krivitsky, Handcock, Raftery

and Hoff, 2009; Zhao, Levina, Zhu, 2012).

Examples include

A ij = #i + #j ! g
!
$i , $j

"

and

A ij = #i + #j + C"
i P Cj

with

Ð #i induces degree heterogeneity,

Ð g
!
$i , $j

"
measures distance in $i attribute

space (assortative matching on $i), or

Ð Ci a K # 1 vector with a 1 in kth row

if i belongs to community k and zeros

elsewhere (and P a K # K real symmetric

matrix)
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Comments on model (continued)

• In each period agents take initial struc-
ture of the network as fixed when deciding
whether to form, maintain or dissolve links.

Ð Best-reply type dynamics

Ð No completeness/coherence problems

Ð Measurement challenges

• A link forms if its net surplus is positive;
utility is transferrable

• Rijt ! 1 measures opportunities to engineer
‘triadic closure’ or the number of triangles
an agent (myopically forecasts) a period t
( i, j ) link will create

• If agents have a structural taste for transi-
tivity the network will evolve in a way that
fills these so-called ‘structural holes’
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Comments on model

• The link rule specified above applies only to

periods t = 1 , . . . , 3. The initial condition

is unspecified. Assume

( D 0, A ) $ ! 0

• with

Ð A denoting the 1
2N ( N ! 1) vector of dyad-

specific heterogeneity terms

• ! 0 is unrestricted

Ð D 0 and A may covary

Ð Elements of A may also be dependent

• In a single cross-section any network con-

figuration can be generated by an appro-

priately chosen draw of A .
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Likelihood

• The joint probability density at a specific

sequence of network configurations and re-

alization of A is:

p
!
d3

0, a, %
"

=
3$

t=1
Pr

%
D t = dt | D t ! 1 = dt ! 1, A = a

&

# & ( d0, a)

=
3$

t=1

$

i<j

'

F
!
!d ijt ! 1 + "r ijt ! 1 + aij

" dijt

#
(
1 ! F

!
!d ijt ! 1 + "r ijt ! 1 + aij

") 1! dijt
*

# & ( d0, a)

• & ( d0, a) is the density of the ‘initial condi-

tion’
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Comments on likelihood

• Since A is unobserved, the econometrician

has three options:

Ð random e!ects : specify a distribution

for A given D 0 and based inference on

the corresponding integrated likelihood;

also specify distribution of Uij

Ð joint Þxed e!ects : treat the
!

N
2

"
com-

ponents of A as additional (incidental)

parameters to be estimated; also specify

distribution of Uij

Ð conditional Þxed e!ects : find an (iden-

tifying) implication of the model that is

invariant to A

• First option is difficult conceptually as well

as computationally. Second option will have

poor statistical properties in the present

setting. The third option is pursued here.
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Comments on likelihood

• Can we learn anything about ! and " with-

out imposing (strong) restrictions on & ( d0, a)
and/or F ( •)?

• We want an (identifying) implication of the

model that is invariant to A

Ð This is a high-dimensional object

Ð Initial condition is also high dimensional

• If we change the value of a single link ( i, j )
from, say, zero to one, many components

of the likelihood may change

• Dyad-specific decisions today may alter the

incentives for link formation across many

other pairs in subsequent periods
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Stable neighborhoods

• Idea: we can learn about the ! and " by

comparing the frequency of different link

histories for a given pair ( i, j ) holding other

(local) features of the network fixed

• Problem: Changing the link history of a

single ( i, j ) pair has effects which cascade

throughout the likelihood

• Solution: Look for pairs embedded in ‘sta-

ble neighborhoods’
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Stable neighborhoods

The pair ( i, j ) are embedded in a stable neigh-

borhood if

• all their links, except possibly those with

each other, are stable across periods 1, 2,

3

• the links belonging to their friends are sta-

ble in periods 1, 2

Let Zij = 1 if ( i, j ) are embedded in a stable

neighborhood and D ij 1 %= D ij 2 and zero other-

wise
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Conditioning Set

Consider the set of network sequences

V
s =

+
v3

0 = ( v0, v1, v2, v3)
,
,
, v t & D for t = 0 , . . . , 3,

v0 = d0, v1 + v2 = d1 + d2, v3 = d3,
vij 1 = dij 1 & vij 2 = dij 2
if zij = 0 , for i, j = 1 , . . . , N

-

(1)

• Vs contains all network sequences constructed
by permutating the period 1 and 2 link de-

cisions of the mN
def
' |D s| dyads embedded

in stable neighborhoods.

• All other link decisions are held fixed at
their observed values.

• The set Vs contains 2|Ds| = 2 mN elements.

15



Stable neighborhoods

Permutation Lemma: For all l %= i, j let
!
R(

il 1, R(
il 2

"

denote the values of ( Ril 1, Ril 2) after permut-

ing D ij 1 and D ij 2. If the pair ( i, j ) is embedded

in a stable neighborhood, then
!
R(

il 1, R(
il 2

"
=

( Ril 2, Ril 1) .

• Permuting D ij 1 and D ij 2 does alter period

2 and 3 link incentives for other agents to

which i and j are linked, but in a controlled

way

• Neighborhood stability implies that D il 1 =
D il 2, so change of incentives is entirely via

transitivity effects
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Stable neighborhoods (continued)

• Consider the period 2 and 3 likelihood con-

tributions of an ( i, l ) pair that is linked in

both periods.

• After permutation

F
%
!d il 1 + "r (

il 1 + ail
&

F
%
!d il 2 + "r (

il 2 + ail
&

= F ( !d il 1 + "r il 2 + ail ) F ( !d il 2 + "r il 1 + ail )

= F ( !d il 2 + "r il 2 + ail ) F ( !d il 1 + "r il 1 + ail )

= F ( !d il 1 + "r il 1 + ail ) F ( !d il 2 + "r il 2 + ail )

• This coincides with the pre-permutation con-

tribution
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Stable neighborhoods (continued)

• If i and j are embedded in a stable neigh-

borhood, then permuting the D ij 1 and D ij 2
leaves all non ( i, j ) contributions to the

likelihood unchanged

Ð initial condition is unaffected

Ð all period 1 contributions, except those

associated with ( i, j ) , are unaffected

Ð period 2 and 3 contributions from ( i, l )
and ( j, l ) dyads – use permutation lemma

(neighborhood stability)

Ð period 2 and 3 contributes from all ( k, l )
dyads are unaffected (D ij 1 and D ij 2 do

not enter the likelihood contributions of

these pairs)
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Main Result

Let Qij =
!
D ij 0, D ij 3, Rij 0, Rij 1

" "
, Sij = D ij 2 !

D ij 1 and define

b01
ij

!
qij , aij , %

" def
'

1 ! F
!
!d ij 0 + "r ij 0 + aij

"

F
!
!d ij 0 + "r ij 0 + aij

"

#
F

!
!d ij 3 + "r ij 1 + aij

"

1 ! F
!
!d ij 3 + "r ij 1 + aij

"

b10
ij

!
qij , aij , %

" def
'

F
!
!d ij 0 + "r ij 0 + aij

"

1 ! F
!
!d ij 0 + "r ij 0 + aij

"

#
1 ! F

!
!d ij 3 + "r ij 1 + aij

"

F
!
!d ij 3 + "r ij 1 + aij

" .
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Main Result (continued)
Theorem 1. (Conditional Likelihood) The con-
ditional likelihood of the event D 3

0 = d3
0 given

that d3
0 & Vs,

l c
!
d3

0, a, %
"

=
p

!
d3

0, a, %
"

#
v&Vs p

!
v3

0, a, %
" , (2)

equals

l c
!
d3

0, a, %
"

=
$

i&Ds

.

/ 1

1 + b01
i 1i 2

!
qij , aij , %

"

0

1

1
!

si 1i 2=1
"

#

.

/ 1

1 + b10
i 1i 2

!
qij , aij , %

"

0

1

1
!

si 1i 2= ! 1
"

• Denominator in (2) is a summation over
2mN elements

• This sum is not intractable.

• The ratio (2) can be expressed as a simple
product of just mN terms.
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Monte Carlo

Agents are scattered uniformly on the two-
dimensional plane

(
0,

)
N

)
#

(
0,

)
N

)
.

The initial network is then generated according
to the rule

D ij 0 = 1
!
A ij ! Uij 0 * 0

"
,

with Uij 0 logistic and A ij 0 taking one of two
values.

• If the Euclidean distance between i and
j is less than or equal to r, then A ij 0 =
ln

!
0.75

1! 0.75

"
, otherwise A ij 0 equals negative

infinity.

• Agents that are less than r apart link with
probability 0.75, while those greater than r
apart link with probability zero.

Network in t = 1 , 2, 3 generate with ! = " = 1
and Uijt logistic.
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Properties of Simulated Networks

Asymptotic Degree 4
Period E [D it ] T GC

t = 0 3.94 0.44 0.58
t = 1 4.98 0.58 0.83
t = 2 5.12 0.59 0.84
t = 3 5.14 0.59 0.85

Notes: The table reports period-specific network sum-
mary statistics across the B = 1 , 000 Monte Carlo sim-
ulations for each design (N = 5 , 000 ). See main text
for other design details. The E [D it ] column gives the
average degree, T the global clustering coefficient or
transitivity index and GC the fraction of agents that are
part of the largest giant component.
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Properties of SN Logit

Asymptotic Degree 4
N = 5 , 000 ! "
Mean 1.0438 1.0456
Median 1.0410 1.0133
Std. Dev. 0.4575 0.2976
Mean Std. Err. 0.4493 0.2917
Coverage 0.9620 0.9650
Avg. # of Stable Dyads 110.6
# of cvg. failures 1

Notes: The table reports period-specific network sum-
mary statistics across the B = 1 , 000 Monte Carlo simu-
lations for each design (N = 5 , 000 ). See the main text
for other design details. The E [D it ] column gives the
average degree, T the clustering coefficient or transitiv-
ity index and GC the fraction of agents that are part of
the largest giant component.
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Final Thoughts

• The availability of multiple observations of

a network over time is potentially very in-

formative

• Fruitful to compare the relative frequency

of certain sequences of link formation for a

given pair, holding the link history of other

pairs fixed

• Consistent estimation using a single (large

sparse) network is possible (primitive con-

ditions for N 2' N + , with ' N = Pr
!
Z ij = 1

"
).

• ‘Fixed effect’ identification analysis can also

help formulate more realistic random ef-

fects models (cf., Goldsmith-Pinkham and

Imbens, 2013)
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