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Setup

e Large (sparse) network consisting of i =
1,...,N potentially connected agents

e Observe all ties in each oft=0,1,2,3 pe-
riods
e D denotes the period t adjacency matrix

b Dj; =1 if agentsi and ] are connected
in period t and zero otherwise

b Ties are undirected: Dijj = Djj

b No self-ties: Dijjt =



Clustering
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e Real world networks exhibit substantial clus-
tering /transitivity in ties

e Transitivity indices often substantially ex-
ceed network densities
3Tt
Trs+3 Tt

Transitivity Index =



Homophily  versus Transitivity

Two explanations for clustering:

e Homophily — ‘birds of a feather flock to-
gether’ (assortative mixing, community struc-

ture)

b sorting may be on both observed and
unobserved agent attributes

e (Structural) taste for ‘triadic closure’ — ‘a
friend of a friend is also my friend’



Homophily  versus Transitivity




Link Formation

Agents | and | form a link in periods t =

1,...,3 according to the rule
|

Dijjt = 1 Djjr1 1+ "Rijrr o+ Aj ! Uj >0

#
Rijt = [2; DiktDjke equals the number of

period t friends i and j have in common

Ajj = Aji Is dyad-specific unobserved het-
erogeneity

Ujjt is iid across links and over time with
distribution function F (u)



Comments on model

e Model captures three key features of link
formation

1. State dependence — !

2. (Structural) taste for transitivity or ‘tri-
adic closure’ — "

3. (Time invariant) dyad-specific hetero-
geneity, Aij

(a) Homophily (Assortative Mixing)

(b) Degree heterogeneity (Graham, 2014)



Comments on model (continued)

e Dyad-specific heterogeneity, Aij ~admits many
specifications (cf., Krivitsky, Handcock, Raftery
and Hoff, 2009; Zhao, Levina, Zhu, 2012).
Examples include

! .
Aj = #H+#! g 3.3

Aj = #H+ #+ Ci"PCj
with

P #; induces degree heterogeneity,

!
b g $,% measuresdistancein $ attribute

space (assortative matching on &), or

P C a K # 1 vector with a 1 in k" row
if 1 belongs to community k and zeros
elsewhere (and P a K# K real symmetric
matrix)



Comments on model (continued)

In each period agents take initial struc-
ture of the network as fixed when deciding
whether to form, maintain or dissolve links.

P Best-reply type dynamics
B No completeness/coherence problems

b Measurement challenges

A link forms if its net surplus is positive;
utility is transferrable

Rijjt 1 1 measures opportunities to engineer
‘triadic closure’ or the number of triangles
an agent (myopically forecasts) a period t
(1,] ) link will create

If agents have a structural taste for transi-
tivity the network will evolve in a way that
fills these so-called ‘structural holes’



Comments on model

The link rule specified above applies only to

periodst =1 ,...,3. The initial condition
IS unspecified. Assume

(Dg,A)$ !¢
with

b A denoting the %N (N I 1) vector of dyad-
specific heterogeneity terms

I o IS unrestricted

b Do and A may covary
b Elements of A may also be dependent
In a single cross-section any network con-

figuration can be generated by an appro-
priately chosen draw of A.



Likelihood

e The joint probability density at a specific
sequence of network configurations and re-
alization of A is:

p!d3,a,°/;

Pr Dy= dDy 1= dy A= a
:#:fé(do,la)
v F!!dijt! L+ Mg aij"d”t

t=1 i
|

# 10 F M1+ Tier 1+ aj
# &(dg, a)

e &(dg,a) is the density of the ‘initial condi-

tion’
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Comments on likelihood

e Since A is unobserved, the econometrician
has three options:

b random elects : specify a distribution
for A given Dg and based inference on
the corresponding integrated likelihood;
also specify distribution of Uij

!
b joint bxed elects : treat the g com-

ponents of A as additional (incidental)
parameters to be estimated; also specify
distribution of Uj;

b conditional Pxed elects : find an (iden-
tifying) implication of the model that is
invariant to A

e First option is difficult conceptually as well
as computationally. Second option will have
poor statistical properties in the present
setting. The third option is pursued here.
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Comments on likelihood

Can we learn anything about! and " with-
out imposing (strong) restrictions on &(dg, a)
and/or F (*)7

We want an (identifying) implication of the
model that is invariant to A

b This is a high-dimensional object

b Initial condition is also high dimensional
If we change the value of a single link (i,] )

from, say, zero to one, many components
of the likelihood may change

Dyad-specific decisions today may alter the
incentives for link formation across many
other pairs in subsequent periods
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Stable neighborhoods

e Idea: we can learn about the ! and " by
comparing the frequency of different link
histories for a given pair (iI,] ) holding other
(local) features of the network fixed

e Problem: Changing the link history of a
single (i,] ) pair has effects which cascade
throughout the likelihood

e Solution: Look for pairs embedded in ‘sta-
ble neighborhoods’
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Stable neighborhoods

T he pair (I,) ) are embedded in a stable neigh-
borhood if

e all their links, except possibly those with
each other, are stable across periods 1, 2,
3

e the links belonging to their friends are sta-
ble in periods 1, 2

Let Z; =1 if (I,]) are embedded in a stable
neighborhood and Djj 1 % Djj 2 and zero other-
wise
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Conditioning Set

Consider the set of network sequences

+

VS = v@= (vg,v1,Vp,V3) Vi &Dfort=0,...,3,
Vo— do, V1 + vz = d1 + dp, vz = dg,
Vit = dj1& Vvjj2 = dj2
ifz =0, fori,) =1,...,N

(1)

e VS contains all network sequences constructed
by permutating the period 1 and 2 link de-

def
cisions of the my 'e|D s| dyads embedded
in stable neighborhoods.

e All other link decisions are held fixed at
their observed values.

e The set VS contains 2IPsl =2 MN elements.
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Stable neighborhoods

!
Permutation Lemma: Foralll % i,j let Rﬁl,Rﬁz

denote the values of (Rj 1,Rj2) after permut-
ing Djj 1 and Djj 2. If the pair (1,] ), is embedded
in a stable neighborhood, then R{,,R{, =
(Rii2,Riji1) -

= Permuting Djj 1 and Djj 2 does alter period
2 and 3 link incentives for other agents to
which | and | are linked, but in a controlled
way

e Neighborhood stability implies that D1 =
D 2, SO change of incentives is entirely via
transitivity effects
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Stable neighborhoods (continued)

e Consider the period 2 and 3 likelihood con-
tributions of an (i,1) pair that is linked in
both periods.

e After permutation

% 1 & % 1
Fldjys+ "r{i,+ay F ldjo+ "ri,+ g

= F(djg+ "ryo+ ay)F(dja+ "rig+ aj)
= F({djo+ "rjz2+ @) F(djp+ "rjgt oaj)
= F(djg+ "rjjz+ a) F(dj2+ "ry2+ a)

&

e T his coincides with the pre-permutation con-
tribution
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Stable neighborhoods (continued)

e If | and jJ are embedded in a stable neigh-
borhood, then permuting the Djj ; and Djj >
leaves all non (i,J ) contributions to the
likelihood unchanged

b initial condition is unaffected

b all period 1 contributions, except those
associated with (i,] ), are unaffected

b period 2 and 3 contributions from (i,l)
and (J,1) dyads — use permutation lemma
(neighborhood stability)

b period 2 and 3 contributes from all (k, )
dyads are unaffected (Dij 1 and Djj» do
not enter the likelihood contributions of
these pairs)
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Main Result

! "
Let Qjj = Dijjo,Djj3:Rjjo.Rjj1 . Sij = Djj2!
Dij 1 and define
!
0_1! ) o qef 11 ||: Idlj0+ "rijo+ a..”
b~ G, aj , % ' .
F ldjo+ "rijo+ a

F - |d . + "r .. +  ai
4 1) 3 1 J

:|.!| F ldjz+ "rij1+ aj

! " 1d - e .
J |J ’ |J ’

1" F Idjjo+ "rijo+ aj
!
1V F Mdijjz+ "rij1+ aj

—
F ldjz+ "rija+ aj
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Main Result (continued)
Theorem 1.  (Conditional Likelihood) The con-
ditional likelihood of the event Dg = d8 given
that d3 & VS,

L p d3,a, %
© d3,a,% = # | ()
V&Vsp V81a1%
equals
!
! " $ 01 Siqip=1
© di,a,% = / — . " 1
&Ds 1+ bj, dj.aij.%
' 04 Si1i2:! 1
# / 5 '1 "1
1+ b3, Gj.aj,%

e Denominator in (2) is a summation over
2MN elements

e This sum is not intractable.

e The ratio (2) can be expressed as a simple
product of just mpy terms.
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® Stable nodes

o  Direct neighbors

e Indirect neighbors
Other nodes

Stable-to-Stable edges
Stable-to-Direct edges
Direct-to-Indirect edges
Other edges
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Monte Carlo

Agents are scattered uniformly on the two-
dimensional plane

( ) _)
O,) N # O ) :
The initial network is then generated according

to the rule
!

Dijo= 1 Aj ! Ujo* 0,
with Ujj o logistic and Ajjo taking one of two
values.

e If the Euclidean distance between | and
] is less than or equal to r, then Ajo =
In 1242 , otherwise Ajj o equals negative
infinity.

e Agents that are less than r apart link with
probability 0.75, while those greater thanr
apart link with probability zero.

Network int=1,2,3 generate with! = " =1
and Ujj; logistic.
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Properties of Simulated Networks

Asymptotic Degree 4

Period E[Dit] T GC
t=0 3.94 0.44 0.58
t=1 498 0.58 0.83
t=2 5.12 0.59 0.84
t=3 5.14 0.59 0.85

Notes: The table reports period-specific network sum-
mary statistics across the B =1 ,000 Monte Carlo sim-
ulations for each design (N =5 ,000). See main text
for other design details. The E[Dj] column gives the
average degree, T the global clustering coefficient or
transitivity index and GC the fraction of agents that are
part of the largest giant component.
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Properties of SN Logit

Asymptotic Degree 4

N =5,000 ! "

Mean 1.0438 1.0456
Median 1.0410 1.0133
Std. Dev. 0.4575 0.2976
Mean Std. Err. 0.4493 0.2917
Coverage 0.9620 0.9650
Avg. # of Stable Dyads 110.6

# of cvg. failures 1

Notes: The table reports period-specific network sum-

mary statistics across the B =1 ,000 Monte Carlo simu-
lations for each design (N =5 ,000). See the main text
for other design details. The E[Dy] column gives the
average degree, T the clustering coefficient or transitiv-
ity index and GC the fraction of agents that are part of
the largest giant component.
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Final Thoughts

The availability of multiple observations of
a network over time is potentially very in-
formative

Fruitful to compare the relative frequency
of certain sequences of link formation for a
given pair, holding the link history of other
pairs fixed

Consistent estimation using a single (large
sparse) network is possible (primitiw_e con- .
ditions for N2' \ +, with' y =Pr Zj =

‘Fixed effect’ identification analysis can also
help formulate more realistic random ef-
fects models (cf., Goldsmith-Pinkham and
Imbens, 2013)
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