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Principal Components Analysis (PCA) in financial data

I Assume Return Generating Process of form

R = φX + ε (1)

Security Returns = Factor Returns× Factor Sensitivities

+Idiosyncratic Returns, where

N = number of securities

K = number of factors

T = number of return periods (days, . . . )

in estimation window

Cov(φ) = IK , the K ×K identity matrix
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PCA in financial data

I Compute eigenvalues and eigenvectors of “covariance”
matrices

I CN×N = R>R
T or

I CT×T = RR>

T

or some weighted version (correlation rather than covariance,
market cap, inverse volatility, temporal weighting, . . . ).

I Typically, use CT×T ; we are interested in the eigenvectors of
CN×N , but the two matrices have the same nonzero
eigenvalues and closely related eigenvectors.

I Throughout, “covariances” and “correlations” are computed
without demeaning

I Follows practitioner literature
I Expected daily equity returns are very close to zero; the sample

mean return over a (one-year) estimation window is a noisy
estimate of zero
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There is More Information in R than in the “Covariance”
matrix CN×N

I Eigenvalues and eigenvectors of CN×N depend on R only
through the “covariance” matrix CN×N

I x is an eigenvector of CN×N
I (portfolio representation of an estimated factor)

⇔ Rx is an eigenvector of CT×T
I (return of an estimated factor)

I Eigenvectors of CT×T contain information about the
distribution of factor returns that is not found in the
“covariance” matrix CN×N :

I Gaussian?
I Excess kurtosis, as in Student t or other power laws?
I Negative skew?
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Statistical Justification of LFE in Financial Markets

I Chamberlain and Rothschild (1983), Connor and Korajczyk
(1988), Bai (2003), . . .

I Asymptotic theory in which T,N →∞ so that ε is not
important for diversified portfolios

I Assumes that CN×N ∼ X>φ>φX
T converges in an appropriate

sense
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Misspecification

I Variable Volatility in φ: In financial data, volatility changes
frequently

I Changes in factor volatility (volatility of φ) change the
correlations of securities

I Example: An increase in market volatility causes the average
correlation between securities to rise

I Regimes in X: In financial data, the sign of the correlation
between assets reverses from time to time

I Example: The correlation between the equity market and the
price of oil is generally positive in response to demand shocks
and negative in response to supply shocks

I Thus, the assumption that CN×N converges is problematic
when applied to financial data
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Two Approaches in the Literature

I Pelger (2015a,2015b), Ait-Sahalia and Xiu (2015): Use
intraday data to make T large with a fixed time horizon

I The horizon is such that there is plausibly only one X regime
I Replace the covariance matrix with the quadratic covariation

process (a matrix-valued stochastic process whose realization
at any time is a covariance matrix).

I Limitation: using intraday data in a global model is
problematic due to temporal asynchronicity

I Identify regimes with a Markov switching model
I Attractive option for X regimes.
I Unattractive for regimes that only involve variable factor

volatility (too many regimes, volatility changes all the time,
. . . )

I Not necessary
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This Project

I Proposes an alternative for dealing with variable φ volatility,
which is conceptually related to use of the quadratic
covariation in Pelger

I Identifies an approach to dealing with non-Gaussian return
distributions

I Identifies strengths and weaknesses in PCA applied to data
containing X regimes

Robert M. Anderson Stephen W. Bianchi PCA with Model Misspecification



Variable Volatility: Formulation

I K Constant Volatility Factors φ̃, covariance matrix the
K ×K identity, IID across time.

I Assume factor distribution is parametrized by a single scale
factor. Need not be Gaussian.

I Volatility process v taking values in RK

I Independent of φ̃
I Perhaps generated by a mean-reverting process such as the

Heston Model (volatility given by modification of
Ornstein-Uhlenbeck process)

I K Variable Volatility Factors φ whose returns on dates
t = 1, . . . , T are given by the Hadamard (elementwise)
product of v and φ̃

φ = v ◦ φ̃ =

 v11φ̃11 . . . v1K φ̃1K
...

...
...

vT1φ̃T1 . . . vTK φ̃TK


I Analogous formulation for idiosyncratic volatility ε = ν ◦ ε̃
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Variable Volatility: Conceptual Idea

I CN×N ∼ X>QX where

I Q = φ>φ
T is the realized covariance matrix of the factor returns

(discrete analogue of quadratic covariation in Pelger)
I

Q ∼ D =


σ2
1 0 · · · 0
0 σ2

2 · · · 0
...

...
...

...
0 0 · · · σ2

K

 (2)

where σ2
k = 1

T

∑T
t=1 v

2
tk is the variance (conditional on v) of

factor k over the period {1, . . . , T}.
I Note that D need not converge in any sense.

I The rows of X are eigenvectors of X>DX, hence are
approximate eigenvectors of CN×N , so PCA correctly
estimates factor sensitivities even with variable factor volatility

I This is true even though changing volatility changes the
correlation of assets
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PCA with Responsive Volatility Adjustment

I Use PCA over the whole estimation period {1, . . . , T},
without separating different volatility regimes

I This yields two sets of eigenvectors:
I The eigenvectors of CN×N are estimates of the factor

sensitivities (rows of X)
I The eigenvectors of CK×K are estimates of the time series of

the factor profit/loss
I Combine the estimated factor sensitivities (eigenvectors of
CN×N ) with exponentially weighted (short half-life) standard
deviation of the eigenvectors of CK×K . Responsive Volatility
Adjustment
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Estimation Error with Variable Volatility: Simulation
Results

I Errors in predictions of portfolio volatility are modestly higher
than in the constant volatility case

I The errors in the estimated rows of X are higher than in the
constant volatility case. Further study of the economic
sigifnicance is needed

I Gaussian estimates of Value at Risk (VaR) (e.g. lower 3%
quantile of return) substantially underpredict risk in the
presence of negative skewness

I Gaussian estimates of Expected Tail Loss (ETL) (e.g.
conditional expectation of loss over lower 3% quantile of
return) substantially underpredict risk in the presence of
negative skewness and/or excess kurtosis
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Historical Method for Predicting VaR and ETL

I Compute past distribution of Z-scores of portfolio return
(actual return divided by predicted return volatility)

I Use these to predict tomorrow’s VaR and ETL, conditional on
today’s volatility prediction

I In simulation,
I Out-of-sample estimates of VaR using Historical Method are

much more accurate than Gaussian estimates in simulation
I Out-of-sample estimates of ETL using Historical Method are

much more accurate than Gaussian estimates in the absence of
skewness

I With negative skewness, Historical Method overpredicts ETL,
while Gaussian methods underpredict ETL. Looking for ways
to correct overprediction.
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Simulation Results: Bias and Directional Distance

Table 1: Variable Volatility vs. Constant Volatility

Variable Volatility Constant Volatility

Half-Life Bias DD Bias DD
Factor 1 Factor 2 Factor 1 Factor 2

10 1.029 0.029 0.163 1.031 0.016 0.093
20 1.013 0.029 0.163 1.014 0.016 0.093
30 1.008 0.029 0.163 1.008 0.016 0.093
40 1.007 0.029 0.163 1.005 0.016 0.093
50 1.008 0.029 0.163 1.004 0.016 0.093
∞ 1.042 0.029 0.163 1.001 0.016 0.093

Table: Performance of Standard PCA with Responsive Volatility Adjustment in Variable and Constant Factor

Volatility Models. The underlying constant-volatility model is the Bianchi, Goldberg and Rosenberg (2016)

two-factor model. This table reports Bias, and average Directional Distance between the estimated and true

factors, with N=1,000 stocks, a PCA estimation window of T=250 days, and 50,000 Iterations. Bias is calculated

for the Equally-Weighted Portfolio; Directional Distance gives guidance for smaller or optimized portfolios.
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Simulation Results: VaR and ETL

Table 2: Gaussian and Historical Method VaR Exceedances and ETL

Distribution Volatility Gaussian Predictions Historical Method
3% VaR 3% ETL 3% VaR 3% ETL
Exceed Ratio Exceed Ratio

Gaussian Constant 3.000% -1.011 2.956% -1.001

Gaussian Variable 3.246% -1.071 2.987% -1.001

Student t Variable 3.292% -1.186 2.971% -1.001

Skew Variable 4.376% -1.252 2.956% -0.725

Table: Simulated Predicted 3% VaR Exceedance and Ratio of 3% ETL to Predicted 3% ETL. Predictions are
derived from estimated volatility, using either Gaussian assumptions or the Historical Method. Simulation with
N=1,000 stocks, T=250 days in each PCA window, and 50,000 Iterations, using the Bianchi, Goldberg and
Rosenberg (2016) two-factor model. The underlying constant-volatility factor returns are either Gaussian with
constant volatility; or Gaussian, Student t, or skewed with variable volatility. This is a two-factor model in which
both factors follow the same discrete version of the Heston Process. Volatility of the Equally-Weighted Portfolio is
predicted with an exponential 40-day half-life. Var and ETL predictions are then made using either Gaussian
assumptions or the Historical Method.
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X Regimes

Theorem
If we apply PCA to a data history combining two different X
regimes, then

I A factor which is present in both regimes will be identified as
an eigenvector

I A factor which is present in Regime I and not in Regime II will
be identified as an eigenvector if and only if it is orthogonal to
all the factors present in Regime II

In particular, a factor which is present only one of the regimes
is likely to be “hybridized” with a factor in the other regime,
rather than being cleanly identified by PCA

Robert M. Anderson Stephen W. Bianchi PCA with Model Misspecification



Bibliography

Stephen W. Bianchi, Lisa R. Goldberg and Allan Rosenberg, “The Impact of Estimation Error on Latent

Factor Model Forecasts of Portfolio Risk, Journal of Portfolio Management (forthcoming, 2016)

Ait-Sahalia, Yacine and Dacheng Xiu, “Principal Components Analysis of High-Speed Data,” technical

report, University of Chicago.

Bai, Jushan, “Inferential Theory for Factor Models of Large Dimensions,” Econometrica 71(2003), 135-171.

Chamberlain, Gary and Michael Rothschild, “Arbitrage, Factor Structure, and Mean-Variance Analysis on

Large Asset Markets,” Econometrica 51(1983), 1281-1304.

Connor, Gregory, and R. A. Korajczyk, “Risk and Return in an Equilibrium APT: Application of a New Test

Methodology,” Journal of Financial Economics, 21(1988), 255289

Pelger, Markus, “Large-dimensional factor modeling based on high-frequency observations,” Working Paper

#2015-08, Center for Risk Management Research, University of California, Berkeley.

Pelger, Markus, “Understanding Systematic Risk: A High-Frequency Approach,” Working Paper #2015-09,

Center for Risk Management Research, University of California, Berkeley.

Robert M. Anderson Stephen W. Bianchi PCA with Model Misspecification


