Modern Massive Algorithmics

Communication:
- Can be the overwhelming cost
- In practice constant factors matter a whole lot

Data Skew:
- Most datasets are heavy tailed
- Naive data distribution can be disastrous
- In synchronous environments must wait for slowest shard
 - “Curse of the last reducer”
Communication:
- Can be the overwhelming cost
- In practice constant factors matter a whole lot

Data Skew:
- Most datasets are heavy tailed
- Naive data distribution can be disastrous
- In synchronous environments must wait for slowest shard
 - “Curse of the last reducer”

Algorithms:
- Embarrassingly parallel may also be embarrassingly slow
- New techniques to minimize communication & skew
Classical problem

- Many parallel algorithms
 - PRAM
 - MapReduce
 - Pregel
 - ...

- Subroutine in many other problems
 - MST
 - Clustering
 - Multiway cuts
 - ...
Today: Graph Connectivity

Classical problem
- Many parallel algorithms
 - PRAM
 - MapReduce
 - Pregel
 - ...
- Subroutine in many other problems
 - MST
 - Clustering
 - Multiway cuts
 - ...

Want to optimize for very large graphs
- Billions of nodes, 100s of billions of edges
- Typically sparse
- Do not fit in memory (10s+ TBs)
Approach

Transform the graph into a union of stars, one for each connected component.
Approach

Transform the graph into a union of stars, one for each connected component.

Begin:
- Every node has a unique id
- Assigned arbitrarily
Approach

Transform the graph into a union of stars, one for each connected component.

Begin:
- Every node has a unique id
- Assigned arbitrarily

Two Local Operations:
- Only look at a node and its neighbors
- Prescribe which edges should exist in the next round
- **LargeStar** \((v)\): Connect all strictly larger neighbors to the min neighbor including **self**.
Operations

- **LargeStar(v)**: Connect all strictly larger neighbors to the min neighbor including self.

- Do this in parallel on every node to build a new graph
Example

Diagram of interconnected nodes.
Example

1

5

2

3

6

4

9

7

8

1

1

8

5

7

3

2

4

9

6

15

Monday, June 23, 14
Example
Lemma: Executing *LargeStar* in parallel preserves connectivity

- WLOG assume $A > b$. If b is min neighbor of A we are done
- If b has no smaller neighbors (local min) we are done
- Else: $A > b > c$ and:
 - Now need to reason about connectivity of (b,c)
 - Show (b,c) connected by induction on node rank
LargeStar: Reinterpretation

- **LargeStar**(v): Connect all strictly larger neighbors to the min neighbor including self.

- Orient all edges from larger to smaller
- LargeStar = tell children to connect to smallest parent
LargeStar Fixed Point

Fixed point if:
- Every node is a local min or connected to local minima
- Orient edges from larger nodes to smaller nodes
 - Fixed point if graph is DAG of height 2
LargeStar Fixed Point

Fixed point if:
- Every node is a local min or connected to local minima
- Orient edges from larger nodes to smaller nodes
 • Fixed point if graph is DAG of height 2

Progress:
- Every LargeStar operation reduces height by a constant factor
LargeStar Fixed Point
Operations

- **LargeStar\((v) \):** Connect all strictly larger neighbors to the min neighbor including self.

- Do this in parallel on every node to build a new graph
- $\text{SmallStar}(v)$: Connect all smaller neighbors and self to the min neighbor.
Example
Example
- **SmallStar(v)**: Connect all *smaller* neighbors and *self* to the *min* neighbor.

- Connect all *parents* (and self) to the *minimum* parent.
Lemma: \texttt{SmallStar} preserves connectivity

- Similar argument as before
Lemma: **SmallStar** preserves connectivity
- Similar argument as before

Progress:
- Run **LargeStar** to completion
- Run one iteration of **SmallStar**
- Run **LargeStar** to completion again
- The number of local minima (maximal nodes in the DAG) reduces by a constant factor
Overall Algorithm

Input:
- Set of edges, with a unique label per node

Repeat until convergence

Repeat until convergence

LargeStar

SmallStar

Theorem:
- The above algorithm converges in $O(\log^2 n)$ rounds.
Both can be easily implemented in MapReduce

- Or Pregel, or Giraph, or ...

LargeStar:

Map \((u;v)\):
- Emit \((u;v)\), Emit \((v;u)\)

Reduce \((u; v_1, v_2, \ldots, v_k)\):
- \(m = \text{argmin } \text{label}(v_i)\)
- Emit \((v,m)\) for all \(v\) with \(\text{label}(v) > \text{label}(m)\)
Discussion

Convergence:
- $\log^2 n$: is tight
- The graph is used to define communication structure from time to time
- Number of edges does not increase at every time step
Approach 1 (Systems):

- **LargeStar** is equivalent to finding one of the maxima in the DAG reachable from each vertex
- Can do this with a fast distributed hash table (DHT) to “walk up to the root”
 - Keep the min id of the parent in a DHT
 - Similar to path compression
Making it Practical

Approach 1 (Systems):

- LargeStar is equivalent to finding one of the maxima in the DAG reachable from each vertex
- Can do this with a fast distributed hash table (DHT) to “walk up to the root”
 - Keep the min id of the parent in a DHT
 - Similar to path compression

Approach 2 (Algorithms):

- Instead of waiting for LargeStar to converge, just interleave LargeStar and SmallStar.
 - Repeat Until Convergence:
 - SmallStar
 - LargeStar
- Can prove convergence
- Appears to converge even faster (conjecture $O(\log(n))$ rounds)
Watching Out for Skew

Final output:

- Union of stars, one for each component
- This should worry you!
 - In case of a single component, get one star with linear degree
 - In case of skewed component sizes, also get one star with linear degree
Divide the computation of the minimum

- Can do this recursively c times
- Increase number of rounds by $1/c$, each node’s input at most n^c
But does it work?

Data (subset):
- UK Web graph: 106M nodes, 6.6B edges
- Google+ subgraph: 178M nodes, 2.9B edges
- Keyword similarity: 371M nodes, 3.5B edges
- Document similarity: 4,700M nodes, 452B edges

Algorithms:
- Hash2Min (previous MapReduce state of the art)
- DHT Implementation
- Alternating algorithm (skew optimized & non-optimized)

Setup:
- Loaded cluster, look at median running times
- 20x–40x faster on the document similarity graph
- Smaller improvements on smaller graphs
Connected Components

- Simple, local algorithms with $O(\log^2 n)$ round complexity
- Communication efficient (number of edges non-increasing)
- Open: Prove $O(\log n)$
- Open: Prove $\sim\log n$ lower bounds!
Conclusion

Connected Components
- Simple, local algorithms with $O(\log^2 n)$ round complexity
- Communication efficient (number of edges non-increasing)
- Open: Prove $O(\log n)$
- Open: Prove $\sim \log n$ lower bounds!

Algorithms:
- Evolve with the underlying system architecture
- Avoid embarrassingly slow embarrassingly parallel implementations
Thank You