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Multi-Reference Alignment

Let G be a group of transformations acting on a vector spaceX .

Estimatex 2 X and g1; : : : ; gn 2 G from n measurements of the form

yi = P gi � x + � i ; i = 1 ; : : : ; n

where� i are independent noise terms.

P : X ! Y is a linear operator, whereY is the \measurement" space
and X is the \object" space.
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Multi-Reference Alignment: Registration (Ex. 1)

G = SO(d)

X = harmonic polynomials of degree� t over Sd� 1 � Rd

(band-limited functions on the unit sphere)

g � h(! ) = h(g� 1! ) for h 2 X ; g 2 G; ! 2 Sd� 1.

Y = RL

P is a sampling operatorh 7! (h(! 1); h(! 2); : : : ; h(! L)) where
! 1; : : : ; ! L 2 Sd� 1.

Signal/Image formation model:

yi = P gi � h + � i
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Registration (d = 1, periodic signals)
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High SNR:Matched �ltering, phase-correlation
Low SNR:Failure of pairwise comparisons.
How to use information in all signals?
Invariants: Power spectrum, higher order spectra (bispectrum).
Is maximum likelihood estimation (MLE) computationally tractable?
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Multi-Reference Alignment: Single Particle Reconstruction
(Ex. 2)

G = SO(3)

X = L2(R3)

g � � (r ) = � (g� 1r ) for � 2 X ; g 2 G; r 2 R3.

Y = RN� N

P is the discrete X-ray transform from computerized tomography

Image formation model:

Ii = P gi � � + � i
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Multi-Reference Alignment: Shape Matching (Ex. 3)

Basic se!ng Generalized se!ng

Figure : Huang and Guibas, \Consistent Shape Maps via Semide�nite
Programming", Eurographics 2013

Current approach:
Use as input a set of pair-wise permutations (between any pair of
shapes).
Ignore origin of permutations as \smooth" deformations.

Can we...
Find all permutations (correspondences) simultaneously as the
minimizer of one global cost function?
Impose smoothness on permutations?
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Canonical optimization problem

min
g1;g2;:::;gn2 G

nX

i ;j =1

fij (g� 1
i gj )

whereG is some group of transformations, andfij are non-linear functions
over G.

Application: �nding ground states of interacting particle systems
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Single Particle Reconstruction using
Cryo-Electron Microscopy

Drawing of the imaging process:
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Single Particle Cryo-Electron Microscopy: Model

Projection Ii
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Projection imagesIi (x; y) =
R1

�1 � (xR1
i + yR2

i + zR3
i ) dz + \noise".

� : R3 7! R is the electric potential of the molecule.
Cryo-EM problem: Find� and R1; : : : ; Rn givenI1; : : : ; In.
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Toy Example
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E. coli 50S ribosomal subunit: sample images
Fred Sigworth, Yale Medical School

 

 

Movie by Lanhui Wang and Zhizhen (Jane) Zhao
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Algorithmic Pipeline

Particle Picking: manual, automatic or experimental image
segmentation.

Class Averaging: classify images with similar viewing directions,
register and average to improve their signal-to-noise ratio (SNR).

Orientation Estimation: common lines

Three-dimensional Reconstruction:
a 3D volume is generated by a tomographic inversion algorithm.

Iterative Re�nement

Assumptions for today's talk:

Trivial point-group symmetry

Homogeneity (no structural variability) =) Heterogeneity
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Orientation Estimation: Fourier projection-slice theorem

Projection Ii

Projection Ij

Îi

Îj

3D Fourier space

3D Fourier space

(xij ; yij )

(xji ; yji )

Ri cij cij = ( xij ; yij ; 0)T

Ri cij = Rj cji
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Angular Reconstitution(Vainshtein and Goncharov 1986, Van Heel 1987)
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Experiments with simulated noisy projections

Each projection is 129x129 pixels.

SNR =
Var(Signal)
Var(Noise)

;

(a) Clean (b) SNR=2 0 (c) SNR=2 � 1 (d) SNR=2 � 2 (e) SNR=2� 3

(f) SNR=2 � 4 (g) SNR=2 � 5 (h) SNR=2 � 6 (i) SNR=2 � 7 (j) SNR=2 � 8
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Fraction of correctly identi�ed common lines and the SNR

De�ne common line as being correctly identi�ed if both radial lines
deviate by no more than 10� from true directions.

log2(SNR) p
20 0.997
0 0.980
-1 0.956
-2 0.890
-3 0.764
-4 0.575
-5 0.345
-6 0.157
-7 0.064
-8 0.028
-9 0.019
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From Common Lines to Maximum Likelihood

The images contain more information than that expressed by the
common lines.

Common line based algorithms can succeed only at \high" SNR
similar to other methods that are based on pairwise comparison
(recall registration).

(Quasi) Maximum Likelihood: We would like to try all possible
rotations R1; : : : ; Rn and choose the combination for which the
agreement on the common lines as observed in the images is maximal.

Computationally intractable: exponentially large search space.
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Maximum Likelihood Solution using SDP

Main idea: Lift SO(3) to Sym(S2)
Suppose! 1; ! 2; : : : ; ! L 2 S2 are \evenly" distributed points over the
sphere (e.g., a sphericalt -design).

g 2 SO(3)  ! � 2 SL (
Assignment

! , Procrustes )
(in practice no explicit construction is needed).
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Convex Relaxation of Permutations arising from Rotations

The convex hull of permutation matrices are the doubly stochastic
matrices (Birkho�-von Neumann polytope):

� 2 RL� L; � � 0; 1T � = 1 T ; �1 = 1

Rotation by an element ofSO(3) should \map nearby-points to
nearby-points". More precisely,SO(3) preserves inner products:


 ij = h! i ; ! j i
�= h! � (i ) ; ! � (j ) i = 
 � (i );� (j )

�
� T �= 
 = ) �
 �= 
�

Axis of rotation (Euler's rotation theorem):

Tr(�)
�
� 2

Notice: We are discretizingS2, not SO(3)
(substantial gain in computational complexity)
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Convex Relaxation of Cycle Consistency: SDP

Let G be a block-matrix of sizen � n with Gij 2 RL� L.

We want Gij = � i � T
j .

G is PSD,Gii = IL� L, and rank(G) = L
(the rank constraint is dropped).

Convex relaxation of search space (putting it all together):

G 2 RnL� nL G � 0 Gii = IL� L (cycle consistency)
Gij � 0 Gij 1 = 1 1T Gij = 1 T (doubly stochastic)

Gij 

�= 
 Gij Tr(Gij )

�
� 2 (SO(3))

Related work: Charikar, Makarychev, Makarychev,
\Near optimal algorithms for Unique Games" (STOC 2006)
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Maximum Likelihood: Linear Objective Function

The common line depends onRi RT
j .

Log-Likelihood function is of the form

X

i 6= j

fij (Ri RT
j )

Nonlinear inRi RT
j , but linear inG.

Proof by picture.
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Linear Objective: Proof by picture
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Tightness of the SDP
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Figure : Fraction of trials (among 100) on whichrank recoverywas observed. Left:
Generalized Orthogonal Procrustes. Right: multi-reference alignment (registration).

The solution of the SDP has the desired rank up to a certain level of
noise (w.h.p).

In other words, even though the search-space is exponentiallylarge,
we typically �nd the MLE in polynomial time.

This is a viable alternative to heuristic methods such as EM and
alternating minimization.

The SDP gives a certi�cate whenever it �nds the MLE.
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Are we there yet?

The SDP approach can be used in a variety of problems where the
objective function is a sum of pairwise interactions

Need better theoretical understanding for the phase transition
behavior and conditions for tightness of the SDP.

Need better computational tools for solving large scale SDPs.
(we use ADMM).
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