
Ping Li Probabilistic Hashing for Efficient Search and Learning July 12, 2012 MMDS2012 1

Probabilistic Hashing for Efficient Search and Learning

Ping Li

Department of Statistical Science

Faculty of Computing and Information Science

Cornell University

Ithaca, NY 14853

July 12, 2012

Ping Li Probabilistic Hashing for Efficient Search and Learning July 12, 2012 MMDS2012 2

BigData Everywhere

Conceptually, consider a dataset as a matrix of size n × D.

In modern applications, # examples n = 106 is common and n = 109 is not

rare, for example, images, documents, spams, search click-through data.

High-dimensional (image, text, biological) data are common: D = 106 (million),

D = 109 (billion), D = 1012 (trillion), D = 264 or even higher. In a sense, D
can be arbitrarily high by considering pairwise, 3-way or higher interactions.

Ping Li Probabilistic Hashing for Efficient Search and Learning July 12, 2012 MMDS2012 3

Examples of BigData Challenges: Linear Learning

Binary classification: Dataset {(xi, yi)}n
i=1, xi ∈ RD , yi ∈ {−1, 1}.

One can fit an L2-regularized linear SVM:

min
w

1
2

wTw + C
n∑

i=1

max
{

1 − yiwTxi, 0
}

,

or the L2-regularized logistic regression:

min
w

1
2

wTw + C
n∑

i=1

log
(

1 + e−yiwTxi

)
,

where C > 0 is the penalty (regularization) parameter.

The weight vector w has length D, the same as the data dimensionality.

Ping Li Probabilistic Hashing for Efficient Search and Learning July 12, 2012 MMDS2012 4

Challenges of Learning with Massive High-dimensional Data

• The data often can not fit in memory (even when the data are sparse).

• Data loading takes too long. For example, online algorithms require less

memory but often need to iterate over the data for several (or many) passes to

achieve sufficient accuracies. Data loading in general dominates the cost.

• Training can be very expensive, even for simple linear models such as logistic

regression and linear SVM.

• Testing may be too slow to meet the demand, especially crucial for

applications in search or interactive data visual analytics.

• The model itself can be too large to store, for example, we can not really store

a vector of weights for logistic regression on data of 264 dimensions.

Ping Li Probabilistic Hashing for Efficient Search and Learning July 12, 2012 MMDS2012 5

A Popular Solution Based on Normal Random Projections

Random Projections : Replace original data matrix A by B = A × R

A R = B

R ∈ RD×k: a random matrix, with i.i.d. entries sampled from N(0, 1).

B ∈ Rn×k : projected matrix, also random.

B approximately preserves the Euclidean distance and inner products between

any two rows of A. In particular, E (BBT) = AAT.

Therefore, we can simply feed B into (e.g.,) SVM or logistic regression solvers.

Ping Li Probabilistic Hashing for Efficient Search and Learning July 12, 2012 MMDS2012 6

Experiments on Classification, Clustering, and Regression

Dataset # Examples (n) # Dims (D) Avg # nonzeros Train v.s. Test

Webspam 350,000 16,609,143 3,728 4/5 v.s. 1/5

MNIST-PW 70,000 193,816 12,346 6/7 v.s. 1/7

PEMS (UCI) 440 138,672 138,672 1/2 v.s. 1/2

CT (UCI) 53,500 384 384 4/5 v.s. 1/5

MNIST-PW = Original MNIST + all pairwise features.

CT = Regression task (reducing number of examples instead of dimensions).

———————

Instead of using dense (normal) projections, we will experiment with

very sparse random projections.

Ping Li Probabilistic Hashing for Efficient Search and Learning July 12, 2012 MMDS2012 7

Very Sparse Random Projections

The projection matrix: R = {rij} ∈ RD×k. Instead of sampling from normals,

we sample from a sparse distribution parameterized by s ≥ 1:

rij =






−1 with prob. 1
2s

0 with prob. 1 − 1
s

1 with prob. 1
2s

If s = 100, then on average, 99% of the entries are zero.

If s = 10000, then on average, 99.99% of the entries are zero.

Usually, s =
√

D or s = k is a good choice.

——————-

Ref: Li, Hastie, Church, Very Sparse Random Projections, KDD’06.

Ping Li Probabilistic Hashing for Efficient Search and Learning July 12, 2012 MMDS2012 8

Linear SVM Test Accuracies on Webspam

Red dashed curves: results based on the original data

10
−2

10
−1

10
0

10
1

10
2

75

80

85

90

95

100

k = 32

k = 64

k = 128

k = 256
k = 512
k = 1024k = 4096

Webspam: SVM (s = 1)

C

C
la

ss
ifi

ca
tio

n
A

cc
 (

%
)

10
−2

10
−1

10
0

10
1

10
2

75

80

85

90

95

100

k = 32

k = 64

k = 128

k = 256
k = 512
k = 1024k = 4096

Webspam: SVM (s = 1000)

C
C

la
ss

ifi
ca

tio
n

A
cc

 (
%

)
Observations:

• We need a large number of projections (e.g., k ≥ 4096) for high accuracy.

• The sparsity parameter s matters little unless k is small.

Ping Li Probabilistic Hashing for Efficient Search and Learning July 12, 2012 MMDS2012 9

Linear SVM Test Accuracies on Webspam

Red dashed curves: results based on the original data

10
−2

10
−1

10
0

10
1

10
2

75

80

85

90

95

100

k = 32

k = 64

k = 128

k = 256
k = 512
k = 1024k = 4096

Webspam: SVM (s = 1)

C

C
la

ss
ifi

ca
tio

n
A

cc
 (

%
)

10
−2

10
−1

10
0

10
1

10
2

75

80

85

90

95

100

k = 32

k = 64

k = 128

k = 256
k = 512
k = 1024k = 4096

Webspam: SVM (s = 10000)

C
C

la
ss

ifi
ca

tio
n

A
cc

 (
%

)

As long as k is large (necessary for high accuracy), the projection matrix can be

extremely sparse, even with s = 10000.

Ping Li Probabilistic Hashing for Efficient Search and Learning July 12, 2012 MMDS2012 10

Linear SVM Test Accuracies on MNIST-PW

Red dashed curves: results based on the original data

10
−2

10
−1

10
0

10
1

10
2

60

70

80

90

100

k = 32

k = 64

k = 128

k = 256
k = 512
k = 1024k = 4096

MNIST−PW: SVM (s = 1)

C

C
la

ss
ifi

ca
tio

n
A

cc
 (

%
)

10
−2

10
−1

10
0

10
1

10
2

60

70

80

90

100

k = 32

k = 64

k = 128

k = 256
k = 512
k = 1024k = 4096

MNIST−PW: SVM (s = 10000)

C
C

la
ss

ifi
ca

tio
n

A
cc

 (
%

)

As long as k is large (necessary for high accuracy), the projection matrix can be

extremely sparse. For this data, we probably need k > 104 for high accuracy.

Ping Li Probabilistic Hashing for Efficient Search and Learning July 12, 2012 MMDS2012 11

Linear SVM Test Accuracies

10
−2

10
−1

10
0

10
1

10
2

75

80

85

90

95

100

k = 32

k = 64

k = 128

k = 256
k = 512
k = 1024k = 4096

Webspam: SVM (s = 1)

C

C
la

ss
ifi

ca
tio

n
A

cc
 (

%
)

10
−2

10
−1

10
0

10
1

10
2

75

80

85

90

95

100

k = 32

k = 64
k = 128

k = 256
k = 512
k = 1024k = 4096

Webspam: SVM (s = 100)

C

C
la

ss
ifi

ca
tio

n
A

cc
 (

%
)

10
−2

10
−1

10
0

10
1

10
2

75

80

85

90

95

100

k = 32

k = 64

k = 128

k = 256
k = 512
k = 1024k = 4096

Webspam: SVM (s = 1000)

C

C
la

ss
ifi

ca
tio

n
A

cc
 (

%
)

10
−2

10
−1

10
0

10
1

10
2

75

80

85

90

95

100

k = 32

k = 64

k = 128

k = 256
k = 512
k = 1024k = 4096

Webspam: SVM (s = 10000)

C

C
la

ss
ifi

ca
tio

n
A

cc
 (

%
)

10
−2

10
−1

10
0

10
1

10
2

60

70

80

90

100

k = 32

k = 64

k = 128

k = 256
k = 512
k = 1024k = 4096

MNIST−PW: SVM (s = 1)

C

C
la

ss
ifi

ca
tio

n
A

cc
 (

%
)

10
−2

10
−1

10
0

10
1

10
2

60

70

80

90

100

k = 32

k = 64

k = 128

k = 256
k = 512
k = 1024k = 4096

MNIST−PW: SVM (s = 100)

C

C
la

ss
ifi

ca
tio

n
A

cc
 (

%
)

10
−2

10
−1

10
0

10
1

10
2

60

70

80

90

100

k = 32

k = 64

k = 128

k = 256
k = 512
k = 1024k = 4096

MNIST−PW: SVM (s = 1000)

C

C
la

ss
ifi

ca
tio

n
A

cc
 (

%
)

10
−2

10
−1

10
0

10
1

10
2

60

70

80

90

100

k = 32

k = 64

k = 128

k = 256
k = 512
k = 1024k = 4096

MNIST−PW: SVM (s = 10000)

C

C
la

ss
ifi

ca
tio

n
A

cc
 (

%
)

Ping Li Probabilistic Hashing for Efficient Search and Learning July 12, 2012 MMDS2012 12

Logistic Regression Test Accuracies

10
−2

10
−1

10
0

10
1

10
2

75

80

85

90

95

100

k = 32

k = 64

k = 128

k = 256
k = 512
k = 1024k = 4096

Webspam: Logit (s = 1)

C

C
la

ss
ifi

ca
tio

n
A

cc
 (

%
)

10
−2

10
−1

10
0

10
1

10
2

75

80

85

90

95

100

k = 32

k = 64

k = 128

k = 256
k = 512
k = 1024k = 4096

Webspam: Logit (s = 100)

C

C
la

ss
ifi

ca
tio

n
A

cc
 (

%
)

10
−2

10
−1

10
0

10
1

10
2

75

80

85

90

95

100

k = 32

k = 64

k = 128

k = 256
k = 512
k = 1024k = 4096

Webspam: Logit (s = 1000)

C

C
la

ss
ifi

ca
tio

n
A

cc
 (

%
)

10
−2

10
−1

10
0

10
1

10
2

75

80

85

90

95

100

k = 32

k = 64

k = 128

k = 256

k = 512
k = 1024k = 4096

Webspam: Logit (s = 10000)

C

C
la

ss
ifi

ca
tio

n
A

cc
 (

%
)

10
−2

10
−1

10
0

10
1

10
2

60

70

80

90

100

k = 32

k = 64

k = 128

k = 256
k = 512
k = 1024

k = 4096

MNIST−PW: Logit (s = 1)

C

C
la

ss
ifi

ca
tio

n
A

cc
 (

%
)

10
−2

10
−1

10
0

10
1

10
2

60

70

80

90

100

k = 32

k = 64

k = 128

k = 256
k = 512
k = 1024

k = 4096

MNIST−PW: Logit (s = 100)

C

C
la

ss
ifi

ca
tio

n
A

cc
 (

%
)

10
−2

10
−1

10
0

10
1

10
2

60

70

80

90

100

k = 32

k = 64

k = 128

k = 256
k = 512
k = 1024

k = 4096

MNIST−PW: Logit (s = 1000)

C

C
la

ss
ifi

ca
tio

n
A

cc
 (

%
)

10
−2

10
−1

10
0

10
1

10
2

60

70

80

90

100

k = 32

k = 64

k = 128

k = 256
k = 512
k = 1024

k = 4096

MNIST−PW: Logit (s = 10000)

C

C
la

ss
ifi

ca
tio

n
A

cc
 (

%
)

Again, as long as k is large (necessary for high accuracy), the projection matrix

can be extremely sparse (i.e., very large s).

Ping Li Probabilistic Hashing for Efficient Search and Learning July 12, 2012 MMDS2012 13

SVM and Logistic Regression Test Accuracies on PEMS

10
−2

10
0

10
2

10
4

0

20

40

60

80

100

k = 32

k = 64

k = 128 k = 256
k = 4096

PEMS: SVM (s = 1)

C

C
la

ss
ifi

ca
tio

n
A

cc
 (

%
)

10
−2

10
0

10
2

10
4

0

20

40

60

80

100

k = 32

k = 64

k = 128

k = 4096

PEMS: SVM (s = 10000)

C

C
la

ss
ifi

ca
tio

n
A

cc
 (

%
)

10
−2

10
0

10
2

10
4

0

20

40

60

80

100

k = 32
k = 64

k = 128

k = 4096

PEMS: Logit (s = 1)

C

C
la

ss
ifi

ca
tio

n
A

cc
 (

%
)

10
−2

10
0

10
2

10
4

0

20

40

60

80

100

k = 32

k = 64

k = 128

k = 4096

PEMS: Logit (s = 10000)

C

C
la

ss
ifi

ca
tio

n
A

cc
 (

%
)

Again, as long as k is large, the projection matrix can be extremely sparse.

Ping Li Probabilistic Hashing for Efficient Search and Learning July 12, 2012 MMDS2012 14

K-Means Clustering Accuracies on MNIST-PW

Random projections were applied before the data were fed to k-means clustering.

As the classification labels are known, we simply use the classification accuracy

to assess the clustering quality.

10
1

10
2

10
3

10
4

30

40

50

60

70

s = 10000

k

C
lu

st
er

in
g

A
cc

 (
%

)

MNIST−PW: K−means

s = 1,10,100

s = 1000

Again, s does not really seem to matter much, as long as k is not small.

Ping Li Probabilistic Hashing for Efficient Search and Learning July 12, 2012 MMDS2012 15

Ridge Regression on CT

Random projections were applied to reduce the number of examples before ridge

regression. The task becomes estimating the original regression coefficients.

10
1

10
2

10
3

10
4

5

10

15

20

k

R
eg

re
ss

io
n

E
rr

or

CT (Train): Regression Error

10
1

10
2

10
3

10
4

5

10

15

20

CT (Test): Regression Error

k
R

eg
re

ss
io

n
E

rr
or

Different curves are for different s values. Again, the sparsity parameter s does

not really seem to matter much, as long as k is not small.

Ping Li Probabilistic Hashing for Efficient Search and Learning July 12, 2012 MMDS2012 16

Advantages of Very Sparse Random Projections (Large s)

Consequences of using very sparse projection matrix R:

• Matrix multiplication A × R becomes much faster.

• Much easier to store R if necessary.

• Much easier to generate (and re-generate) R on the fly.

• Sparse original data =⇒ sparse projected data. Average number of 0’s of the

projected data vector would be

k ×
(

1 −
1
s

)f

where f is the number of nonzero elements in the original data vector.

——————-

Ref: Li, Hastie, Church, Very Sparse Random Projections, KDD’06.

Ping Li Probabilistic Hashing for Efficient Search and Learning July 12, 2012 MMDS2012 17

Disadvantages of Random Projections (and Variants)

Inaccurate, especially on binary data.

Ping Li Probabilistic Hashing for Efficient Search and Learning July 12, 2012 MMDS2012 18

Variance Analysis for Inner Product Estimates

A R = B

First two rows in A: u1, u2 ∈ RD (D is very large):

u1 = {u1,1, u1,2, ..., u1,i, ..., u1,D}

u2 = {u2,1, u2,2, ..., u2,i, ..., u2,D}

First two rows in B: v1, v2 ∈ Rk (k is small):

v1 = {v1,1, v1,2, ..., v1,j, ..., v1,k}

v2 = {v2,1, v2,2, ..., v2,j, ..., v2,k}

Ping Li Probabilistic Hashing for Efficient Search and Learning July 12, 2012 MMDS2012 19

â =
1
k

k∑

j=1

v1,jv2,j , (which is also an inner product)

E(â) = a

V ar(â) =
1
k

(
m1m2 + a2)

m1 =
D∑

i=1

|u1,i|2, m2 =
D∑

i=1

|u2,i|2

———

Random projections may not be good for inner products because the variance is

dominated by marginal l2 norms m1m2, especially when a ≈ 0.

For real-world datasets, most pairs are often close to be orthogonal (a ≈ 0).

——————-

Ref: Li, Hastie, and Church, Very Sparse Random Projections, KDD’06.

Ref: Li, Shrivastava, Moore, König, Hashing Algorithms for Large-Scale Learning, NIPS’11

Ping Li Probabilistic Hashing for Efficient Search and Learning July 12, 2012 MMDS2012 20

b-Bit Minwise Hashing

• Simple algorithm designed specifically for massive binary data.

• Much more accurate than random projections for estimating inner products.

• Much smaller space requirement than the original minwise hashing algorithm.

• Capable of estimating 3-way similarity, while random projections can not.

• Useful for large-scale linear learning (and kernel learning of course).

• Useful for sub-linear time near neighbor search.

Ping Li Probabilistic Hashing for Efficient Search and Learning July 12, 2012 MMDS2012 21

Massive, High-dimensional, Sparse, and Binary Data

Binary sparse data are very common in the real-world :

• For many applications (such as text), binary sparse data are very natural.

• Many datasets can be quantized/thresholded to be binary without hurting the

prediction accuracy.

• In some cases, even when the “original” data are not too sparse, they often

become sparse when considering pariwise and higher-order interactions.

Ping Li Probabilistic Hashing for Efficient Search and Learning July 12, 2012 MMDS2012 22

An Example of Binary (0/1) Sparse Massive Data

A set S ⊆ Ω = {0, 1, ..., D − 1} can be viewed as 0/1 vector in D dimensions.

Shingling : Each document (Web page) can be viewed as a set of w-shingles.

For example, after parsing, a sentence “today is a nice day” becomes

• w = 1: {“today”, “is”, “a”, “nice”, “day”}

• w = 2: {“today is”, “is a”, “a nice”, “nice day”}

• w = 3: {“today is a”, “is a nice”, “a nice day”}

Previous studies used w ≥ 5, as single-word (unit-gram) model is not sufficient.

Shingling generates extremely high dimensional vectors, e.g., D = (105)w .

(105)5 = 1025 = 283, although in current practice, it seems D = 264 suffices.

Ping Li Probabilistic Hashing for Efficient Search and Learning July 12, 2012 MMDS2012 23

Notation

A binary (0/1) vector can be equivalently viewed as a set (locations of nonzeros).

Consider two sets S1, S2 ⊆ Ω = {0, 1, 2, ..., D − 1} (e.g., D = 264)

f
2

f
1 a

f1 = |S1|, f2 = |S2|, a = |S1 ∩ S2|.

The resemblance R is a popular measure of set similarity

R =
|S1 ∩ S2|
|S1 ∪ S2|

=
a

f1 + f2 − a

Ping Li Probabilistic Hashing for Efficient Search and Learning July 12, 2012 MMDS2012 24

Minwise Hashing: Stanford Algorithm in the Context of Searc h

Suppose a random permutation π is performed on Ω, i.e.,

π : Ω −→ Ω, where Ω = {0, 1, ..., D − 1}.

An elementary probability argument shows that

Pr (min(π(S1)) = min(π(S2))) =
|S1 ∩ S2|
|S1 ∪ S2|

= R.

Ping Li Probabilistic Hashing for Efficient Search and Learning July 12, 2012 MMDS2012 25

An Example

D = 5. S1 = {0, 3, 4}, S2 = {1, 2, 3}, R = |S1∩S2|
|S1∪S2| = 1

5 .

One realization of the permutation π can be

0 =⇒ 3

1 =⇒ 2

2 =⇒ 0

3 =⇒ 4

4 =⇒ 1

π(S1) = {3, 4, 1} = {1, 3, 4}, π(S2) = {2, 0, 4} = {0, 2, 4}

In this example, min(π(S1)) 6= min(π(S2)).

Ping Li Probabilistic Hashing for Efficient Search and Learning July 12, 2012 MMDS2012 26

Minwise Hashing Estimator

After k permutations, π1, π2, ..., πk , one can estimate R without bias:

R̂M =
1
k

k∑

j=1

1{min(πj(S1)) = min(πj(S2))},

Var
(

R̂M

)
=

1
k

R(1 − R).

—————————-

We recently realized that this estimator could be written as an inner product in

264 × k (assuming D = 264) dimensions). This means one can potentially use

it for linear learning, although the dimensionality would be excessively high.

Ref: Li, Shrivastava, Moore, König, Hashing Algorithms for Large-Scale Learning, NIPS’11

Ping Li Probabilistic Hashing for Efficient Search and Learning July 12, 2012 MMDS2012 27

b-Bit Minwise Hashing: the Intuition

Basic idea : Only store the lowest b-bits of each hashed value, for small b.

Intuition:

• When two sets are identical, then their lowest b-bits of the hashed values are

of course also equal. b = 1 only stores whether a number is even or odd.

• When two sets are similar, then their lowest b-bits of the hashed values

“should be” also similar (True?? Need a proof).

• Therefore, hopefully we do not need many bits to obtain useful information,

especially when real applications care about pairs with reasonably high

resemblance values (e.g., 0.5).

Ping Li Probabilistic Hashing for Efficient Search and Learning July 12, 2012 MMDS2012 28

The Basic Collision Probability Result

Consider two sets, S1 and S2,

S1, S2 ⊆ Ω = {0, 1, 2, ..., D − 1},

f1 = |S1|, f2 = |S2|, a = |S1 ∩ S2|

Define the minimum values under π : Ω → Ω to be z1 and z2:

z1 = min (π (S1)) , z2 = min (π (S2)) .

and their b-bit versions

z(b)
1 = The lowest b bits of z1, z(b)

2 = The lowest b bits of z2

Example: if z1 = 7(= 111 in binary), then z(1)
1 = 1, z(2)

1 = 3.

Ping Li Probabilistic Hashing for Efficient Search and Learning July 12, 2012 MMDS2012 29

Collision probability : Assume D is large (which is virtually always true)

Pb = Pr
(

z(b)
1 = z(b)

2

)
= C1,b + (1 − C2,b) R

——————–

Recall, (assuming infinite precision, or as many digits as needed), we have

Pr (z1 = z2) = R

Ping Li Probabilistic Hashing for Efficient Search and Learning July 12, 2012 MMDS2012 30

Collision probability : Assume D is large (which is virtually always true)

Pb = Pr
(

z(b)
1 = z(b)

2

)
= C1,b + (1 − C2,b) R

r1 =
f1

D
, r2 =

f2

D
, f1 = |S1|, f2 = |S2|,

C1,b = A1,b
r2

r1 + r2
+ A2,b

r1

r1 + r2
,

C2,b = A1,b
r1

r1 + r2
+ A2,b

r2

r1 + r2
,

A1,b =
r1 [1 − r1]2

b−1

1 − [1 − r1]2
b

, A2,b =
r2 [1 − r2]2

b−1

1 − [1 − r2]2
b

.

——————–

Ref: Li and König, b-Bit Minwise Hashing, WWW’10.

Ping Li Probabilistic Hashing for Efficient Search and Learning July 12, 2012 MMDS2012 31

The closed-form collision probability is remarkably accurate even for small D.

The absolute errors (approximate - exact) are very small even for D = 20.

0 0.2 0.4 0.6 0.8 1
0

0.002

0.004

0.006

0.008

0.01

f
2
 = 2

f
2
 = 4

a / f
2

A
pp

ro
xi

m
at

io
n

E
rr

or

D = 20, f
1
 = 4, b = 1

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4
x 10

−4

D = 500, f
1
 = 50, b = 1

f
2
 = 2

f
2
 = 25

f
2
 = 50

a / f
2

A
pp

ro
xi

m
at

io
n

E
rr

or
0 0.2 0.4 0.6 0.8 1

0

0.002

0.004

0.006

0.008

0.01

f
2
 = 2

f
2
 = 5

f
2
 = 10

a / f
2

A
pp

ro
xi

m
at

io
n

E
rr

or

D = 20, f
1
 = 10, b = 1

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4
x 10

−4

a / f
2

A
pp

ro
xi

m
at

io
n

E
rr

or

D = 500, f
1
 = 250, b = 1

—————–

Ref: Li and König, Theory and Applications of b-Bit Minwise Hashing, CACM

Research Highlights, 2011 .

Ping Li Probabilistic Hashing for Efficient Search and Learning July 12, 2012 MMDS2012 32

An Unbiased Estimator

An unbiased estimator R̂b for R:

R̂b =
P̂b − C1,b

1 − C2,b
,

P̂b =
1
k

k∑

j=1

{
z(b)

1,πj
= z(b)

2,πj

}
,

Var
(

R̂b

)
=

Var
(

P̂b

)

[1 − C2,b]2
=

1
k

Pb(1 − Pb)
[1 − C2,b]2

Ping Li Probabilistic Hashing for Efficient Search and Learning July 12, 2012 MMDS2012 33

The Variance-Space Trade-off

Smaller b =⇒ smaller space for each sample. However,

smaller b =⇒ larger variance.

B(b; R, r1, r2) characterizes the var-space trade-off:

B(b; R, r1, r2) = b × Var
(

R̂b

)

Lower B(b) is better.

Ping Li Probabilistic Hashing for Efficient Search and Learning July 12, 2012 MMDS2012 34

The ratio,

B(b1; R, r1, r2)
B(b2; R, r1, r2)

measures the improvement of using b = b2 (e.g., b2 = 1) over using b = b1

(e.g., b1 = 64).

B(64)
B(b) = 20 means, to achieve the same accuracy (variance), using b = 64 bits

per hashed value will require 20 times more space (in bits) than using b = 1.

Ping Li Probabilistic Hashing for Efficient Search and Learning July 12, 2012 MMDS2012 35

B(64)
B(b) , relative improvement of using b = 1, 2, 3, 4 bits, compared to 64 bits.

0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

25

30

35

Resemblance (R)

Im
pr

ov
em

en
t

r
1
 = r

2
 = 10−10 b = 1

b = 2

b = 3

b = 4

0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

25

30

35

Resemblance (R)

Im
pr

ov
em

en
t

r
1
 = r

2
 = 0.1

b = 1

b = 2

b = 3

b = 4

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

60

Resemblance (R)

Im
pr

ov
em

en
t

r
1
 = r

2
 = 0.5

b = 1

b = 2

b = 3

b = 4

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

60

Resemblance (R)

Im
pr

ov
em

en
t

r
1
 = r

2
 = 0.9

b = 1

b = 2

b = 3

b = 4

Ping Li Probabilistic Hashing for Efficient Search and Learning July 12, 2012 MMDS2012 36

Relative Improvements in the Least Favorable Situation

If r1, r2 → 0 (least favorable situation; there is a proof), then

B(64)
B(1)

= 64
R

R + 1

If R = 0.5, then the improvement will be 64
3 = 21.3-fold.

Ping Li Probabilistic Hashing for Efficient Search and Learning July 12, 2012 MMDS2012 37

Experiments: Duplicate detection on Microsoft news articl es

The dataset was crawled as part of the BLEWS project at Microsoft. We

computed pairwise resemblances for all documents and retrieved documents

pairs with resemblance R larger than a threshold R0.

0 100 200 300 400 500
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

R
0
 = 0.3

Sample size (k)

P
re

ci
si

on

b=1b=2

b=1
b=2
b=4
M

0 100 200 300 400 500
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

R
0
 = 0.4

Sample size (k)

P
re

ci
si

on

2

b=1

b=1
b=2
b=4
M

Ping Li Probabilistic Hashing for Efficient Search and Learning July 12, 2012 MMDS2012 38

0 100 200 300 400 500
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

R
0
 = 0.5

Sample size (k)

P
re

ci
si

on

b=1

2

b=1
b=2
b=4
M

0 100 200 300 400 500
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

R
0
 = 0.6

Sample size (k)

P
re

ci
si

on

2

b=1

b=1
b=2
b=4
M

0 100 200 300 400 500
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

R
0
 = 0.7

Sample size (k)

P
re

ci
si

on

b=1

2

b=1
b=2
b=4
M

0 100 200 300 400 500
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

R
0
 = 0.8

Sample size (k)

P
re

ci
si

on

2

b=1

b=1
b=2
b=4
M

Ping Li Probabilistic Hashing for Efficient Search and Learning July 12, 2012 MMDS2012 39

1/2 Bit Suffices for High Similarity

Practical applications are sometimes interested in pairs of very high similarities.

For these data, one can XOR two bits from two permutations, into just one bit.

The new estimator is denoted by R̂1/2. Compared to the 1-bit estimator R̂1:

• A good idea for highly similar data :

lim
R→1

Var
(

R̂1

)

Var
(

R̂1/2

) = 2.

• Not so good idea when data are not very similar :

Var
(

R̂1

)
< Var

(
R̂1/2

)
, if R < 0.5774, Assuming sparse data

—————

Ref: Li and König, b-Bit Minwise Hashing, WWW’10.

Ping Li Probabilistic Hashing for Efficient Search and Learning July 12, 2012 MMDS2012 40

b-Bit Minwise Hashing for Estimating 3-Way Similarities

Notation for 3-way set intersections

a
12

f
1 a

a
23

f
3

a
13

f
2

r
1

r
3

s
12

s
s
23

r
2

s
13

3-Way collision probability : Assume D is large.

Pr (lowest b bits of 3 hashed values are equal) =
Z
u

+ R123 =
Z + s

u
,

where u = r1 + r2 + r3 − s12 − s13 − s23 + s, and ...

Ping Li Probabilistic Hashing for Efficient Search and Learning July 12, 2012 MMDS2012 41

Z =(s12 − s)A3,b +
(r3 − s13 − s23 + s)

r1 + r2 − s12
s12G12,b

+(s13 − s)A2,b +
(r2 − s12 − s23 + s)

r1 + r3 − s13
s13G13,b

+(s23 − s)A1,b +
(r1 − s12 − s13 + s)

r2 + r3 − s23
s23G23,b

+
[

(r2 − s23)A3,b + (r3 − s23)A2,b

] (r1 − s12 − s13 + s)

r2 + r3 − s23
G23,b

+
[

(r1 − s13)A3,b + (r3 − s13)A1,b

] (r2 − s12 − s23 + s)

r1 + r3 − s13
G13,b

+
[

(r1 − s12)A2,b + (r2 − s12)A1,b

] (r3 − s13 − s23 + s)

r1 + r2 − s12
G12,b,

Aj,b =
rj (1 − rj)2b−1

1 − (1 − rj)2b
,

Gij,b =
(ri + rj − sij)(1 − ri − rj + sij)2b−1

1 − (1 − ri − rj + sij)2b
, i, j ∈ {1, 2, 3}, i 6= j.

—————

Ref: Li, König, Gui, b-Bit Minwise Hashing for Estimating 3-Way Similarities,

NIPS’10.

Ping Li Probabilistic Hashing for Efficient Search and Learning July 12, 2012 MMDS2012 42

Useful messages :

1. Substantial improvement over using 64 bits, just like in the 2-way case.

2. Must use b ≥ 2 bits for estimating 3-way similarities.

Ping Li Probabilistic Hashing for Efficient Search and Learning July 12, 2012 MMDS2012 43

b-Bit Minwise Hashing for Large-Scale linear Learning

Linear learning algorithms require the estimators to be inner products.

If we look carefully, the estimator of minwise hashing is indeed an inner product of

two (extremely sparse) vectors in D × k dimensions (infeasible when D = 264):

R̂M =
1
k

k∑

j=1

1{min(πj(S1)) = min(πj(S2))

because, as z1 = min(π(S1)), z2 = min(π(S2)) ∈ Ω = {0, 1, ..., D − 1}.

1{z1 = z2} =
D−1∑

i=0

1{z1 = i} × {z2 = i}

———–

Ref: Li, Shrivastava, Moore, König, Hashing Algorithms for Large-Scale Learning, NIPS’11.

Ping Li Probabilistic Hashing for Efficient Search and Learning July 12, 2012 MMDS2012 44

Consider D = 5. We can expand numbers into vectors of length 5.

0 =⇒ [0, 0, 0, 0, 1], 1 =⇒ [0, 0, 0, 1, 0], 2 =⇒ [0, 0, 1, 0, 0]
3 =⇒ [0, 1, 0, 0, 0], 4 =⇒ [1, 0, 0, 0, 0].

———————

If z1 = 2, z2 = 3, then

0 = 1{z1 = z2} = inner product between [0, 0, 1, 0, 0] and [0, 1, 0, 0, 0].

If z1 = 2, z2 = 2, then

1 = 1{z1 = z2} = inner product between [0, 0, 1, 0, 0] and [0, 0, 1, 0, 0].

Ping Li Probabilistic Hashing for Efficient Search and Learning July 12, 2012 MMDS2012 45

Linear Learning Algorithms

Linear algorithms such as linear SVM and logistic regression have become very

powerful and extremely popular. Representative software packages include

SVMperf, Pegasos, Bottou’s SGD SVM, and LIBLINEAR.

Given a dataset {(xi, yi)}n
i=1, xi ∈ RD , yi ∈ {−1, 1}, the L2-regularized

linear SVM solves the following optimization problem:

min
w

1
2

wTw + C
n∑

i=1

max
{

1 − yiwTxi, 0
}

,

and the L2-regularized logistic regression solves a similar problem:

min
w

1
2

wTw + C
n∑

i=1

log
(

1 + e−yiwTxi

)
.

Here C > 0 is an important penalty (regularization) parameter.

Ping Li Probabilistic Hashing for Efficient Search and Learning July 12, 2012 MMDS2012 46

Integrating b-Bit Minwise Hashing for (Linear) Learning

Very simple :

1. We apply k independent random permutations on each (binary) feature

vector xi and store the lowest b bits of each hashed value. This way, we

obtain a new dataset which can be stored using merely nbk bits.

2. At run-time, we expand each new data point into a 2b × k-length vector, i.e.

we concatenate the k vectors (each of length 2b). The new feature vector has

exactly k 1’s.

Ping Li Probabilistic Hashing for Efficient Search and Learning July 12, 2012 MMDS2012 47

An example with k = 3 and b = 2

For set (vector) S1:

Original hashed values (k = 3) : 12013 25964 20191

Original binary representations :

010111011101101 110010101101100 100111011011111

Lowest b = 2 binary digits : 01 00 11

Corresponding decimal values : 1 0 3

Expanded 2b = 4 binary digits : 0010 0001 1000

New feature vector fed to a solver : {0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0}

Same procedures on sets S2, S3, ...

Ping Li Probabilistic Hashing for Efficient Search and Learning July 12, 2012 MMDS2012 48

Datasets and Solver for Linear Learning

This talk presents the experiments on two text datasets.

Dataset # Examples (n) # Dims (D) Avg # Nonzeros Train / Test

Webspam (24 GB) 350,000 16,609,143 3728 80% / 20%

Rcv1 (200 GB) 781,265 1,010,017,424 12062 50% / 50%

To generate the Rcv1 dataset, we used the original features + all pairwise

features + 1/30 3-way features.

We chose LIBLINEAR as the basic solver for linear learning. Note that our method

is purely statistical/probabilistic, independent of the underlying procedures.

All experiments were conducted on workstations with Xeon(R) CPU

(W5590@3.33GHz) and 48GB RAM, under Windows 7 System.

Ping Li Probabilistic Hashing for Efficient Search and Learning July 12, 2012 MMDS2012 49

Experimental Results on Linear SVM and Webspam

• We conducted our extensive experiments for a wide range of regularization C
values (from 10−3 to 102) with fine spacings in [0.1, 10].

• We experimented with k = 30 to k = 500, and b = 1, 2, 4, 8, and 16.

Ping Li Probabilistic Hashing for Efficient Search and Learning July 12, 2012 MMDS2012 50

Testing Accuracy

10
−3

10
−2

10
−1

10
0

10
1

10
2

80
82
84
86
88
90
92
94
96
98

100

C

A
cc

ur
ac

y
(%

)

b = 6,8,10,16

b = 1

svm: k = 200

b = 24

b = 4

Spam: Accuracy

• Solid: b-bit hashing. Dashed (red) the original data

• Using b ≥ 8 and k ≥ 200 achieves about the same test accuracies as using

the original data.

• The results are averaged over 50 runs.

Ping Li Probabilistic Hashing for Efficient Search and Learning July 12, 2012 MMDS2012 51

10
−3

10
−2

10
−1

10
0

10
1

10
2

80
82
84
86
88
90
92
94
96
98

100

C

A
cc

ur
ac

y
(%

)

b = 1

b = 2

b = 4

b = 6b = 8,10,16

svm: k = 50
Spam: Accuracy

10
−3

10
−2

10
−1

10
0

10
1

10
2

80
82
84
86
88
90
92
94
96
98

100

C
A

cc
ur

ac
y

(%
)

Spam: Accuracy

svm: k = 100

b = 1

b = 2

b = 4
b = 8,10,16

4

6

6

10
−3

10
−2

10
−1

10
0

10
1

10
2

80
82
84
86
88
90
92
94
96
98

100

C

A
cc

ur
ac

y
(%

)

svm: k = 150

Spam: Accuracy

b = 1

b = 2

b = 4
b = 6,8,10,16

4

10
−3

10
−2

10
−1

10
0

10
1

10
2

80
82
84
86
88
90
92
94
96
98

100

C

A
cc

ur
ac

y
(%

)

b = 6,8,10,16

b = 1

svm: k = 200

b = 24

b = 4

Spam: Accuracy

10
−3

10
−2

10
−1

10
0

10
1

10
2

80
82
84
86
88
90
92
94
96
98

100

C

A
cc

ur
ac

y
(%

)

Spam: Accuracy

svm: k = 300

b = 1

b = 2
4

b = 4
b = 6,8,10,16

10
−3

10
−2

10
−1

10
0

10
1

10
2

80
82
84
86
88
90
92
94
96
98

100

b = 1

b = 2
4

b = 6,8,10,16

C

A
cc

ur
ac

y
(%

)

svm: k = 500

Spam: Accuracy

b = 4

Ping Li Probabilistic Hashing for Efficient Search and Learning July 12, 2012 MMDS2012 52

Stability of Testing Accuracy (Standard Deviation)

Our method produces very stable results, especially b ≥ 4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
−2

10
−1

10
0

C

A
cc

ur
ac

y
(s

td
 %

)

b = 1

b = 2

b = 4

b = 6
b = 8

b = 16
10

svm: k = 50
Spam accuracy (std)

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
−2

10
−1

10
0

C

A
cc

ur
ac

y
(s

td
 %

)

b = 1

b = 2

b = 4

b = 6
b = 8

b = 10,16svm: k = 100
Spam accuracy (std)

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
−2

10
−1

10
0

C

A
cc

ur
ac

y
(s

td
 %

)

 svm: k = 150

Spam:Accuracy (std)

b = 1

b = 2

b = 4

b = 8
b = 16

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
−2

10
−1

10
0

C

A
cc

ur
ac

y
(s

td
 %

)

b = 1

b = 2

b = 4

b = 6

b = 8,10,16
svm: k = 200
Spam accuracy (std)

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
−2

10
−1

10
0

C

A
cc

ur
ac

y
(s

td
 %

)

Spam:Accuracy (std)

b = 1

b = 2

b = 4
b = 8
b = 16svm: k = 300

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
−2

10
−1

10
0

b = 1

b = 2

b = 4

b = 6,8,10,16Spam accuracy (std)

C

A
cc

ur
ac

y
(s

td
 %

)

svm: k = 500

Ping Li Probabilistic Hashing for Efficient Search and Learning July 12, 2012 MMDS2012 53

Training Time

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
0

10
1

10
2

10
3

C

T
ra

in
in

g
tim

e
(s

ec
)

svm: k = 50
Spam: Training time

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
0

10
1

10
2

10
3

C

T
ra

in
in

g
tim

e
(s

ec
)

svm: k =100
Spam: Training time

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
0

10
1

10
2

10
3

C

T
ra

in
in

g
tim

e
(s

ec
)

svm: k = 150

Spam:Training Time

b = 16

b = 1

b=8

b = 4
b = 1

 2
4
16

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
0

10
1

10
2

10
3

C

T
ra

in
in

g
tim

e
(s

ec
)

b = 16

svm: k = 200
Spam: Training time

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
0

10
1

10
2

10
3

C

T
ra

in
in

g
tim

e
(s

ec
)

b = 16

b = 1

 2

4
16

b=8

b = 1

svm: k = 300

Spam:Training Time
10

−3
10

−2
10

−1
10

0
10

1
10

2
10

0

10
1

10
2

10
3

Spam: Training time

b = 10

b = 16

C

T
ra

in
in

g
tim

e
(s

ec
)

svm: k = 500

• They did not include data loading time (which is small for b-bit hashing)

• The original training time is about 100 seconds.

• b-bit minwise hashing needs about 3 ∼ 7 seconds (3 seconds when b = 8).

Ping Li Probabilistic Hashing for Efficient Search and Learning July 12, 2012 MMDS2012 54

Testing Time

10
−3

10
−2

10
−1

10
0

10
1

10
2

1
2

10

100

1000

C

T
es

tin
g

tim
e

(s
ec

)

svm: k = 50
Spam: Testing time

10
−3

10
−2

10
−1

10
0

10
1

10
2

1
2

10

100

1000

C

T
es

tin
g

tim
e

(s
ec

)

svm: k = 100
Spam: Testing time

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
0

10
1

10
2

10
3

C

T
es

tin
g

tim
e

(s
ec

)

svm: k = 150
Spam:Testing Time

10
−3

10
−2

10
−1

10
0

10
1

10
2

1
2

10

100

1000

C

T
es

tin
g

tim
e

(s
ec

)

svm: k = 200
Spam: Testing time

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
0

10
1

10
2

10
3

C

T
es

tin
g

tim
e

(s
ec

) Spam:Testing Time
svm: k = 300

10
−3

10
−2

10
−1

10
0

10
1

10
2

1
2

10

100

1000

C

T
es

tin
g

tim
e

(s
ec

)

svm: k = 500
Spam: Testing time

Ping Li Probabilistic Hashing for Efficient Search and Learning July 12, 2012 MMDS2012 55

Experimental Results on L2-Regularized Logistic Regression

Testing Accuracy

10
−3

10
−2

10
−1

10
0

10
1

10
2

80
82
84
86
88
90
92
94
96
98

100

C

A
cc

ur
ac

y
(%

)

logit: k = 50
Spam: Accuracy

b = 1

b = 2

b = 4

b = 6b = 8,10,16

10
−3

10
−2

10
−1

10
0

10
1

10
2

80
82
84
86
88
90
92
94
96
98

100

C

A
cc

ur
ac

y
(%

)
logit: k = 100

Spam: Accuracy

b = 1

b = 2

b = 4
b = 6

b = 8,10,16

10
−3

10
−2

10
−1

10
0

10
1

10
2

80

85

90

95

100

C

A
cc

ur
ac

y
(%

)

Spam:Accuracy
logit: k = 150

b = 1

b = 2

b = 4b = 8

10
−3

10
−2

10
−1

10
0

10
1

10
2

80
82
84
86
88
90
92
94
96
98

100

C

A
cc

ur
ac

y
(%

)

Spam: Accuracy

logit: k = 200

b = 6,8,10,16

b = 1

b = 2

b = 4

10
−3

10
−2

10
−1

10
0

10
1

10
2

80

90

95

100

C

A
cc

ur
ac

y
(%

)

logit: k = 300
Spam:Accuracy

b = 1

b = 2

b = 4
b = 8

10
−3

10
−2

10
−1

10
0

10
1

10
2

80
82
84
86
88
90
92
94
96
98

100

C

A
cc

ur
ac

y
(%

)

logit: k = 500

Spam: Accuracy

b = 1

b = 2
b = 4

4

b = 6,8,10,16

Ping Li Probabilistic Hashing for Efficient Search and Learning July 12, 2012 MMDS2012 56

Training Time

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
0

10
1

10
2

10
3

C

T
ra

in
in

g
tim

e
(s

ec
)

logit: k = 50

Spam: Training time

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
0

10
1

10
2

10
3

C

T
ra

in
in

g
tim

e
(s

ec
)

logit: k = 100

Spam: Training time

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
0

10
1

10
2

10
3

C

T
ra

in
in

g
tim

e
(s

ec
)

logit: k = 150
Spam:Training Time

b = 16
b = 1

2 b = 84

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
0

10
1

10
2

10
3

C

T
ra

in
in

g
tim

e
(s

ec
)

logit: k = 200

Spam: Training time

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
0

10
1

10
2

10
3

C

T
ra

in
in

g
tim

e
(s

ec
)

b = 16

b = 1

b = 482

logit: k = 300
Spam:Training Time

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
0

10
1

10
2

10
3

C
T

ra
in

in
g

tim
e

(s
ec

) b = 16

logit: k = 500

Spam: Training time

Ping Li Probabilistic Hashing for Efficient Search and Learning July 12, 2012 MMDS2012 57

Comparisons with Other Algorithms

We conducted extensive experiments with the VW algorithm (Weinberger et. al.,

ICML’09, not the VW online learning platform), which has the same variance as

random projections.

Consider two sets S1, S2, f1 = |S1|, f2 = |S2|, a = |S1 ∩ S2|,
R = |S1∩S2|

|S1∪S2| = a
f1+f2−a . Then, from their variances

V ar (âV W) ≈
1
k

(
f1f2 + a2)

V ar
(

R̂MINW ISE

)
=

1
k

R (1 − R)

we can immediately see the significant advantages of minwise hashing, especially

when a ≈ 0 (which is common in practice).

Ping Li Probabilistic Hashing for Efficient Search and Learning July 12, 2012 MMDS2012 58

Comparing b-Bit Minwise Hashing with VW

8-bit minwise hashing (dashed, red) with k ≥ 200 (and C ≥ 1) achieves about

the same test accuracy as VW with k = 104 ∼ 106.

10
1

10
2

10
3

10
4

10
5

10
6

80
82
84
86
88
90
92
94
96
98

100

C = 0.01

1,10,100

0.1

k

A
cc

ur
ac

y
(%

)

svm: VW vs b = 8 hashing

C = 0.01

C = 0.1
C = 1

10,100

Spam: Accuracy

10
1

10
2

10
3

10
4

10
5

10
6

80
82
84
86
88
90
92
94
96
98

100

k

A
cc

ur
ac

y
(%

)

1

C = 0.01

C = 0.1

C = 1
10

C = 0.01

C = 0.1

10,100

logit: VW vs b = 8 hashing
Spam: Accuracy

100

Ping Li Probabilistic Hashing for Efficient Search and Learning July 12, 2012 MMDS2012 59

8-bit hashing is substantially faster than VW (to achieve the same accuracy).

10
2

10
3

10
4

10
5

10
6

10
0

10
1

10
2

10
3

k

T
ra

in
in

g
tim

e
(s

ec
) C = 100

C = 10

C = 1,0.1,0.01
C = 100

C = 10

C = 1,0.1,0.01

Spam: Training time

svm: VW vs b = 8 hashing

10
2

10
3

10
4

10
5

10
6

10
0

10
1

10
2

10
3

k
T

ra
in

in
g

tim
e

(s
ec

)

C = 0.01

10,1.0,0.1

100

logit: VW vs b = 8 hashing
Spam: Training time

C = 0.1,0.01

C = 100,10,1

Ping Li Probabilistic Hashing for Efficient Search and Learning July 12, 2012 MMDS2012 60

Experimental Results on Rcv1 (200GB)

Test accuracy using linear SVM (Can not train the original data)

10
−3

10
−2

10
−1

10
0

10
1

10
2

50

60

70

80

90

100

C

A
cc

ur
ac

y
(%

)

rcv1: Accuracy

svm: k =50 b = 16

b = 12

b = 8

b = 4

b = 2

b = 1

10
−3

10
−2

10
−1

10
0

10
1

10
2

50

60

70

80

90

100

C

A
cc

ur
ac

y
(%

)
rcv1: Accuracy

svm: k =100 b = 16

b = 12
b = 8

b = 4
b = 2

b = 1

10
−3

10
−2

10
−1

10
0

10
1

10
2

50

60

70

80

90

100

C

A
cc

ur
ac

y
(%

)

svm: k =150

rcv1: Accuracy

b = 16
b = 12

b = 8

b = 4

b = 2

b = 1

10
−3

10
−2

10
−1

10
0

10
1

10
2

50

60

70

80

90

100

C

A
cc

ur
ac

y
(%

)

svm: k =200

rcv1: Accuracy

b = 16

b = 12
b = 8

b = 4

b = 2

b = 1

10
−3

10
−2

10
−1

10
0

10
1

10
2

50

60

70

80

90

100

C

A
cc

ur
ac

y
(%

)

rcv1: Accuracy

svm: k =300 b = 16
b = 12

b = 8

b = 4

b = 2

b = 1

10
−3

10
−2

10
−1

10
0

10
1

10
2

50

60

70

80

90

100

b = 1

b = 2

b = 4

b = 8
b = 12

b = 16

C
A

cc
ur

ac
y

(%
)

svm: k =500

rcv1: Accuracy

Ping Li Probabilistic Hashing for Efficient Search and Learning July 12, 2012 MMDS2012 61

Training time using linear SVM

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
0

10
1

10
2

10
3

C

T
ra

in
in

g
tim

e
(s

ec
)

rcv1: Train Time

svm: k=50

12

16

b = 8

12

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
0

10
1

10
2

10
3

C
T

ra
in

in
g

tim
e

(s
ec

)

rcv1: Train Time

svm: k=100

b = 16

12

b = 8

12

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
0

10
1

10
2

10
3

C

T
ra

in
in

g
tim

e
(s

ec
)

rcv1: Train Time

svm: k=150

b = 16
12

b = 8

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
0

10
1

10
2

10
3

C

T
ra

in
in

g
tim

e
(s

ec
)

rcv1: Train Time

svm: k=200

b = 16
12

b = 8

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
0

10
1

10
2

10
3

C

T
ra

in
in

g
tim

e
(s

ec
)

rcv1: Train Time

svm: k=300

b = 16

12

b = 8

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
0

10
1

10
2

10
3

svm: k=500

b = 8

12

b = 16

C

T
ra

in
in

g
tim

e
(s

ec
)

rcv1: Train Time

Ping Li Probabilistic Hashing for Efficient Search and Learning July 12, 2012 MMDS2012 62

Test accuracy using logistic regression

10
−2

10
0

10
2

50

60

70

80

90

100

C

A
cc

ur
ac

y
(%

)

rcv1: Accuracy

logit: k =50 b = 16

b = 12

b = 8

b = 4

b = 2

b = 1

10
−3

10
−2

10
−1

10
0

10
1

10
2

50

60

70

80

90

100

C
A

cc
ur

ac
y

(%
)

rcv1: Accuracy
b = 1

b = 2

b = 4

b = 8

b = 12

b = 16logit: k =100

10
−3

10
−2

10
−1

10
0

10
1

10
2

50

60

70

80

90

100

C

A
cc

ur
ac

y
(%

)

rcv1: Accuracy

logit: k =150 b = 16

b = 12
b = 8

b = 4

b = 2

b = 1

10
−3

10
−2

10
−1

10
0

10
1

10
2

50

60

70

80

90

100

C

A
cc

ur
ac

y
(%

)

rcv1: Accuracy

logit: k =200 b = 16
b = 12

b = 8

b = 4

b = 2

b = 1

10
−3

10
−2

10
−1

10
0

10
1

10
2

50

60

70

80

90

100

C

A
cc

ur
ac

y
(%

)

b = 16
b = 12

b = 8

b = 4

b = 2

b = 1

logit: k =300

rcv1: Accuracy

10
−3

10
−2

10
−1

10
0

10
1

10
2

50

60

70

80

90

100

C

A
cc

ur
ac

y
(%

)

b = 16

b = 12
b = 8

b = 4

b = 2

b = 1

rcv1: Accuracy

logit: k =500

Ping Li Probabilistic Hashing for Efficient Search and Learning July 12, 2012 MMDS2012 63

Training time using logistic regression

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
0

10
1

10
2

10
3

C

T
ra

in
in

g
tim

e
(s

ec
)

rcv1: Train Time

logit: k=50

b = 16
8

b = 1

b = 4

b = 2

b = 12

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
0

10
1

10
2

10
3

C
T

ra
in

in
g

tim
e

(s
ec

)

rcv1: Train Time

logit: k=100

b = 8

b = 16

b = 12

b = 1

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
0

10
1

10
2

10
3

C

T
ra

in
in

g
tim

e
(s

ec
)

rcv1: Train Time

logit: k=150

b = 16

12
8

b = 4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
0

10
1

10
2

10
3

C

T
ra

in
in

g
tim

e
(s

ec
)

rcv1: Train Time

logit: k=200

b = 16

12
8

b = 1

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
0

10
1

10
2

10
3

C

T
ra

in
in

g
tim

e
(s

ec
)

rcv1: Train Time

logit: k=300
b = 16

12

b = 8

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
0

10
1

10
2

10
3

C

T
ra

in
in

g
tim

e
(s

ec
)

rcv1: Train Time

b = 16
12

b = 8

logit: k=500

Ping Li Probabilistic Hashing for Efficient Search and Learning July 12, 2012 MMDS2012 64

Comparisons with VW on Rcv1

Test accuracy using linear SVM

10
1

10
2

10
3

10
4

50

60

70

80

90

100

K

A
cc

ur
ac

y
(%

)

svm: VW vs hashing

rcv1: Accuracy

C = 0.01

C = 0.1,1,10

C = 0.01,0.1,1,10

1−bit

10
1

10
2

10
3

10
4

50

60

70

80

90

100

K

A
cc

ur
ac

y
(%

)
rcv1: Accuracy

svm: VW vs hashing2−bit

C = 0.01,0.1,1,10 C = 0.01

C = 0.1,1,10

10
1

10
2

10
3

10
4

50

60

70

80

90

100

K

A
cc

ur
ac

y
(%

)

rcv1: Accuracy
svm: VW vs hashing4−bit

C = 0.01

C = 0.1,1,10

C = 0.01

C = 10

10
1

10
2

10
3

10
4

50

60

70

80

90

100

K

A
cc

ur
ac

y
(%

)

rcv1: Accuracy

svm: VW vs hashing8−bit

C = 0.1,1,10

C = 0.01
C = 0.01

C = 10

10
1

10
2

10
3

10
4

50

60

70

80

90

100

C = 0.01

K

A
cc

ur
ac

y
(%

)

C = 0.01
C = 0.1,1,10

rcv1: Accuracy
svm: VW vs hashing12−bit

C = 10

10
1

10
2

10
3

10
4

50

60

70

80

90

100

K

A
cc

ur
ac

y
(%

)

C = 0.1,1,10

C = 0.01

rcv1: Accuracy

svm: VW vs hashing16−bit

C = 10

C = 0.01

Ping Li Probabilistic Hashing for Efficient Search and Learning July 12, 2012 MMDS2012 65

Test accuracy using logistic regression

10
1

10
2

10
3

10
4

50

60

70

80

90

100

C = 0.01

C = 0.01,0.1,1,10

C = 0.1,1,10

K

A
cc

ur
ac

y
(%

)

logit: VW vs hashing
rcv1: Accuracy

1−bit

10
1

10
2

10
3

10
4

50

60

70

80

90

100

K

A
cc

ur
ac

y
(%

)

C = 1
logit: VW vs hashing2−bit

rcv1: Accuracy

C = 0.1,1,10

C = 0.01
C = 0.01,0.1,1,10

10
1

10
2

10
3

10
4

50

60

70

80

90

100

K

A
cc

ur
ac

y
(%

)

C = 0.1,1,10

C = 0.01

C = 0.1,1,10

C = 0.01

rcv1: Accuracy
logit: VW vs hashing4−bit

10
1

10
2

10
3

10
4

50

60

70

80

90

100

K

A
cc

ur
ac

y
(%

)

rcv1: Accuracy
logit: VW vs hashing8−bit

C = 0.01

C = 0.1,1,10

C = 0.01

C = 0.1,1,10

10
1

10
2

10
3

10
4

50

60

70

80

90

100

K

A
cc

ur
ac

y
(%

)

rcv1: Accuracy
logit: VW vs hashing12−bit

C = 0.01

C = 0.1,1,10

C = 0.1,1,10

C = 0.01

10
1

10
2

10
3

10
4

50

60

70

80

90

100

K
A

cc
ur

ac
y

(%
)

C = 0.01

C = 0.1,1,10

C = 0.01

C = 10

logit: VW vs hashing16−bit

Ping Li Probabilistic Hashing for Efficient Search and Learning July 12, 2012 MMDS2012 66

Training time

10
1

10
2

10
3

10
4

10
0

10
1

10
2

10
3

C = 0.01

C = 0.1

C = 10

8−bit

K

T
ra

in
in

g
tim

e
(s

ec
)

C = 0.01

C = 0.1

C = 1

rcv1: Train Time

svm: VW vs hashing

C = 1

C = 10

10
1

10
2

10
3

10
4

10
0

10
1

10
2

10
3

K
T

ra
in

in
g

tim
e

(s
ec

)

rcv1: Train Time

logit: VW vs hashing8−bit

C = 10

C = 1

C = 0.1

C = 0.01

C = 0.01

C = 0.1

C = 1

C = 10

Ping Li Probabilistic Hashing for Efficient Search and Learning July 12, 2012 MMDS2012 67

b-Bit Minwise Hashing for Efficient Near Neighbor Search

Near neighbor search is a much more frequent operation than training an SVM.

The bits from b-bit minwise hashing can be directly used to build hash tables to

enable sub-linear time near neighbor search.

This is an instance of the general family of locality-sensitive hashing.

Ping Li Probabilistic Hashing for Efficient Search and Learning July 12, 2012 MMDS2012 68

An Example of b-Bit Hashing for Near Neighbor Search

We use b = 2 bits and k = 2 permutations to build a hash table indexed from

0000 to 1111, i.e., the table size is 22×2 = 16.

00 10

11 10
11 11

00 00
00 01

Index Data Points

11 01

8, 13, 251
 5, 14, 19, 29
(empty)

33, 174, 3153
 7, 24, 156

 61, 342

00 10

11 10
11 11

00 00
00 01

Index Data Points

11 01

8

17, 36, 129
2, 19, 83

7, 198

56, 989
,9, 156, 879

4, 34, 52, 796

Then, the data points are placed in the buckets according to their hashed values.

Look for near neighbors in the bucket which matches the hash value of the query.

Replicate the hash table (twice in this case) for missed and good near neighbors.

Final retrieved data points (before re-ranking) are the union of the buckets.

Ping Li Probabilistic Hashing for Efficient Search and Learning July 12, 2012 MMDS2012 69

Experiments on the Webspam Dataset

B = b × k: table size L: number of tables.

Fractions of retrieved data points (before re-ranking)

8 12 16 20 24
10

−2

10
−1

10
0

Webspam: L = 25

B (bits)

F
ra

ct
io

n
E

va
lu

at
ed

b = 1

b = 2

b = 4

SRP
b−bit

8 12 16 20 24
10

−2

10
−1

10
0

B (bits)

F
ra

ct
io

n
E

va
lu

at
ed

b = 1

b = 2

b = 4

Webspam: L = 50

SRP
b−bit

8 12 16 20 24
10

−2

10
−1

10
0

Webspam: L = 100

B (bits)

F
ra

ct
io

n
E

va
lu

at
ed

b = 1

b = 2

b = 4

SRP
b−bit

SRP (sign random projections) and b-bit hashing (with b = 1, 2) retrieved similar

numbers of data points.

————————

Ref: Shrivastava and Li, Fast Near Neighbor Search in High-Dimensional Binary

Data, ECML’12

Ping Li Probabilistic Hashing for Efficient Search and Learning July 12, 2012 MMDS2012 70

Precision-Recall curves (the higher the better) for retrieving top-T data points.

0 10 20 30 40 50 60 70 80 90 100
0

10
20
30
40
50
60
70
80
90

100

Recall (%)

P
re

ci
si

on
 (

%
)

B= 24 L= 100
Webspam: T = 5

b = 1

b = 4

SRP
b−bit

0 10 20 30 40 50 60 70 80 90 100
0

10
20
30
40
50
60
70
80
90

100

Recall (%)

P
re

ci
si

on
 (

%
)

B= 24 L= 100
Webspam: T = 10

b = 1

b = 4

SRP
b−bit

0 10 20 30 40 50 60 70 80 90 100
0

10
20
30
40
50
60
70
80
90

100

Recall (%)

P
re

ci
si

on
 (

%
)

B= 24 L= 100
Webspam: T = 50

b = 1

b = 4

SRP
b−bit

0 10 20 30 40 50 60 70 80 90 100
0

10
20
30
40
50
60
70
80
90

100

Recall (%)

P
re

ci
si

on
 (

%
)

B= 16 L= 100
Webspam: T = 5

1

b = 4

SRP
b−bit

0 10 20 30 40 50 60 70 80 90 100
0

10
20
30
40
50
60
70
80
90

100

Recall (%)

P
re

ci
si

on
 (

%
)

B= 16 L= 100
Webspam: T = 10

1

b = 4

SRP
b−bit

0 10 20 30 40 50 60 70 80 90 100
0

10
20
30
40
50
60
70
80
90

100

Recall (%)

P
re

ci
si

on
 (

%
)

B= 16 L= 100
Webspam: T = 50

1

b = 4

SRP
b−bit

Using L = 100 tables, b-bit hashing considerably outperformed SRP (sign

random projections), for table sizes B = 24 and B = 16. Note that there are

many LSH schemes, which we did not compare exhaustively.

Ping Li Probabilistic Hashing for Efficient Search and Learning July 12, 2012 MMDS2012 71

Simulating Permutations with Universal (2U and 4U) Hashing

10
−3

10
−2

10
−1

10
0

10
1

10
2

70

80

90

100

b = 1

b = 2

b = 4

b = 8

C

A
cc

ur
ac

y
(%

)

SVM: k = 10

Spam: Accuracy

Perm
2U
4U

10
−3

10
−2

10
−1

10
0

10
1

10
2

85

90

95

100

b = 1

b = 2

b = 4

b = 8

C

A
cc

ur
ac

y
(%

)

SVM: k = 100
Spam: Accuracy

Perm
2U
4U

10
−3

10
−2

10
−1

10
0

10
1

10
2

85

90

95

100

b = 1

b = 2

b = 4

b = 8

C

A
cc

ur
ac

y
(%

)

SVM: k = 200
Spam: Accuracy

SVM: k = 200
Spam: Accuracy
SVM: k = 200
Spam: Accuracy

Perm
2U
4U

10
−3

10
−2

10
−1

10
0

10
1

10
2

85

90

95

100

b = 1

b = 2

4b = 8

C

A
cc

ur
ac

y
(%

)

SVM: k = 500
Spam: Accuracy

SVM: k = 500
Spam: Accuracy
SVM: k = 500
Spam: Accuracy

Perm
2U
4U

Both 2U and 4U perform well except when b = 1 or small k.

———————–

Ref: Li, Shrivastava, König, b-Bit Minwise Hashing in Practice, arXiv:1205.2958

Ping Li Probabilistic Hashing for Efficient Search and Learning July 12, 2012 MMDS2012 72

Speed Up PreProcessing Using GPUs

CPU: Data loading and preprocessing (for k = 500 permutations) times (in

seconds). Note that we measured the loading times of LIBLINEAR which used a

plain text data format. Using binary data will speed up data loading.

Dataset Loading Permu 2U 4U (Mod) 4U (Bit)

Webspam 9.7 × 102 6.1 × 103 4.1 × 103 4.4 × 104 1.4 × 104

Rcv1 1.0 × 104 – 3.0 × 104 – –

GPU: Data loading and preprocessing (for k = 500 permutations) times

Dataset Loading GPU 2U GPU 4U (Mod) GPU 4U (Bit)

Webspam 9.7 × 102 51 5.2 × 102 1.2 × 102

Rcv1 1.0 × 104 1.4 × 103 1.5 × 104 3.2 × 103

Note that the modular operations in 4U can be replaced by bit operations.

Ping Li Probabilistic Hashing for Efficient Search and Learning July 12, 2012 MMDS2012 73

Breakdowns of the overhead : A batch-based GPU implementation.

10
0

10
1

10
2

10
3

10
4

10
5

10
−2

10
0

10
2

10
4

Batch size

T
im

e
(s

ec
) GPU Kernel

CPU −−> GPU

GPU −−> CPU
Spam: GPU Profiling, 2U

10
0

10
1

10
2

10
3

10
4

10
5

10
−2

10
0

10
2

10
4

Batch size

T
im

e
(s

ec
)

GPU Kernel

CPU −−> GPU

GPU −−> CPU

Rcv1: GPU Profiling, 2U

10
0

10
1

10
2

10
3

10
4

10
5

10
−2

10
0

10
2

10
4

Batch size

T
im

e
(s

ec
)

Spam: GPU Profiling, 4U−Bit

GPU Kernel

CPU −−> GPU

GPU −−> CPU

10
0

10
1

10
2

10
3

10
4

10
5

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

Batch size

T
im

e
(s

ec
)

Rcv1: GPU Profiling, 4U−Bit

GPU −−> CPU

CPU −−> GPU

GPU Kernel

GPU kernel times dominate the cost. The cost is not sensitive to the batch size.

————————

Ref: Li, Shrivastava, König, b-Bit Minwise Hashing in Practice, arXiv:1205.2958

Ref: Li, Shrivastava, König, GPU-Based Minwise Hashing, WWW’12 Poster

Ping Li Probabilistic Hashing for Efficient Search and Learning July 12, 2012 MMDS2012 74

Online Learning (SGD) with Hashing

b-Bit minwise hashing can also be highly beneficial for online learning in that it

significantly reduces the data loading time which is usually the bottleneck for

online algorithms, especially if many epochs are required.

10
−10

10
−8

10
−6

10
−4

10
−2

80

85

90

95

100

b = 1
b = 2

b = 4

λ

A
cc

ur
ac

y
(%

)

SGD SVM: k = 50
Spam: Accuracy

b = 6

10
−10

10
−8

10
−6

10
−4

10
−2

80

85

90

95

100

b = 1

b = 2

b = 4

λ
A

cc
ur

ac
y

(%
)

SGD SVM: k = 200
Spam: Accuracy

λ: 1/C , following the convention in online learning literature.

Red dashed curve: Results based on the original data

————————

Ref: Li, Shrivastava, König, b-Bit Minwise Hashing in Practice, arXiv:1205.2958

Ping Li Probabilistic Hashing for Efficient Search and Learning July 12, 2012 MMDS2012 75

Conclusion

• BigData everywhere. For many operations including clustering, classification,

near neighbor search, etc. exact answers are often not necessary.

• Very sparse random projections (KDD 2006) work as well as dense random

projections. They however require a large number of projections.

• Minwise hashing is a standard procedure in the context of search. b-bit

minwise hashing is a substantial improvement by using only b bits per hashed

value instead of 64 bits (e.g., a 20-fold reduction in space).

• b-bit minwise hashing provides a very simple strategy for efficient linear

learning, by expanding the bits into vectors of length 2b × k.

• We can directly build hash tables from b-bit minwise hashing for sub-linear

time near neighbor search.

• It can be substantially more accurate than random projections (and variants).

Ping Li Probabilistic Hashing for Efficient Search and Learning July 12, 2012 MMDS2012 76

• Major drawbacks of b-bit minwise hashing:

– It was designed (mostly) for binary static data.

– It needs a fairly high-dimensional representation (2b × k) after expansion.

– Expensive preprocessing and consequently expensive testing phrase for

unprocessed data. Parallelization solutions based on (e.g.,) GPUs offer

very good performance in terms of time but they are not energy-efficient.

