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The IID bootstrap
• data are IID F

• we resample IID from the empirical distribution F̂

• getting variance estimates and confidence intervals

We like it because

• face value validity (or at least explainability)

• deep theory for X̄ vs. E(X)

• extensions to more general statistics

Bootstrap (and cross-validation) let us use very mild assumptions:

1) IID data, and

2) non-pathological moments.

Stanford University, July 13, 2012



MMDS 2012 3

IID data vectors
Variable 1 · · · Variable C

Case 1
...

Case R

1) Variables are named entities:

◦ E.g. pressure, volume, income · · ·
◦ They persist

2) Cases are anonymous replicates

◦ Sampled IID from some F

◦ Of no inherent interest

◦ We’d rather just know F

For IID data · · ·
. . . we only care about cases because they show relationships among variables.

Stanford University, July 13, 2012
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Two-way data
Rating Viewer 1 Viewer 2 Viewer 3 · · · Viewer C

Movie 1 4 4 1 · · · 4

Movie 2 5 5 NA · · · NA

Movie 3 3 3 NA · · · 2
...

...
...

...
. . .

...

Movie R NA 5 3 · · · 4

More examples of two-way data:

genes × environments → crop yields

terms × documents → counts

candidate × interviewer → rating

nodes × more nodes → labeled edges

Stanford University, July 13, 2012
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Tensor data
r-way data, i.e. an r-tuple of named entities. For example:

Suppose that customer U

comes from computer (machine) M

enters query Q

reads review R

buys book B

with credit card book C

ships to address A

Then Amazon’s logs get (U,M,Q,R,B,C,A) among other variables (such as price paid).

While r = 2 is most common, r > 2 arises frequently.

Stanford University, July 13, 2012
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Tuples

Movie Viewer Rating

Case 1 1 1 4

Case 2 1 2 4

Case 3 2 1 5
...

...
...

...

Case N R C 4

• Now cases are anonymous

• We don’t store the NAs

• 2 categorical variables

with lots of levels

• Not independent:

◦ Cases 1 & 2 share a movie

◦ Cases 1 & 3 share a viewer

How should we bootstrap and cross-validate data like this?

What about r > 2?

Maybe large N means no meaningful uncertainty.

Stanford University, July 13, 2012
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Random effects model
Xij = µ+ ai + bj + εij i = 1, . . . , R j = 1, . . . , C

ai ∼ N (0, σ2
A) e.g. plants

bj ∼ N (0, σ2
B) e.g. environments

εij ∼ N (0, σ2
E)

Used in agriculture

Studied for decades

µ̂ is X̄••

No bootstrap exists for V (µ̂)

None can exist · · ·
· · · McCullagh (2000)

We can’t even bootstrap a balanced X̄ !

Stanford University, July 13, 2012
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What about classical approaches?

prime reference:

• Excellent for balanced Gaussian data

• Unbalance =⇒ invert large matrices

• Emphasis on homogeneous variances

Stanford University, July 13, 2012
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McCullagh (2000)

For µ̂ = X̄•• =
1

R

1

C

R∑
i=1

C∑
j=1

Xij

Boot-I Resample from N = RC values

Boot-II Resample R rows and resample C columns (indep)

V (µ̂) =
σ2
A

R
+
σ2
B

C
+
σ2
E

RC
true var

E(V̂I(µ̂))
.
=
(
σ2
A + σ2

B + σ2
E

) 1

RC
way too small

E(V̂II(µ̂))
.
=
σ2
A

R
+
σ2
B

C
+

3σ2
E

RC
not so bad

Boot-I is seriously flawed, Boot-II is close
Stanford University, July 13, 2012
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The case r = 2
O (2007)

Independent bootstrap of rows and columns

Allows for missing data · · · but conditions on pattern of observed data

Allows non-homogeneous V (ai), V (bj) and V (εij)

Still get E(V̂B(µ̂))
.
= V (µ̂), i.e.

Still get ≈ 1× the main effect contribution

≈ 3× the interaction contribution

On Netflix data ... naive bootstrap can under-estimate variance by 56,200 fold

Sunday vs. Tuesday edge of 0.02 stars is real

mimics pigeonhole model of Cornfield & Tukey (1956)

Fine print:

uniform bounds on variances, and

no row/column has more than ε of the data
Stanford University, July 13, 2012
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Goals
We would like to get an approximate bootstrap for arbitrary data patterns with r > 2.

We focus on getting the variance approximately right.

Challenge Today

What happens to that 3 for r > 2? •
There are many missing data values. •
Missingness might be informative. •
The entities might have unequal variances. •
We might want a little more than X̄ . •
We might want a lot more than X̄ . •

Stanford University, July 13, 2012
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Illustrative data sets

Netflix

N = 100,480,507 ratings,

by 480,189 customers,

on 17,770 movies

X is 1 to 5 stars

used in famous contest

Facebook

18,134,419 comments

by 8,078,531 commenters

on 2,085,639 URLs

shared by 3,904,715 sharers

X is log(# chars in comment)

Example

Alice (shares a URL) “Hey, check out http://stat.stanford.edu”

Bob (comments on it) “Thanks for sharing that, I learned a lot.”

Data url = http://stat.stanford.edu

sharer = Alice

commenter = Bob

log lengthX = log(41)
.
= 3.71

Stanford University, July 13, 2012
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Random effects: r-way case
Index i = (i1, i2, . . . , ir) ∈ {1, 2, 3, · · · }r

Sub-index iu = (ij1 , . . . , ijL) u = {j1, . . . , jL} ⊆ {1, 2, . . . , r}
Data Xi ∈ Rd short for Xi1,i2,...,ir use d = 1

Presence Zi ∈ {0, 1}

We model a random effect for each non-empty u ⊆ {1, 2, . . . , r}.

Xi = µ+
∑
u6=∅

εi,u

E(εi,u) = 0

Cov(εi,u, εi′,u′) = σ2
i,u1u=u′1iu=i′u

Homogeneous special case

σ2
i,u ≡ σ2

u ∀ i ∈ Nr ∀u ⊆ {1, . . . , r}
Stanford University, July 13, 2012
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The product reweighted bootstrap

µ̂ =

∑
i ZiXi∑
i Zi

and µ̂∗ =

∑
i ZiWiXi∑
i ZiWi

Our reweighting

Wi =
r∏

j=1

Wj,ij

E(Wj,ij ) = 1 all indep.

V (Wj,ij ) = τ2 usually τ2 = 1

Stanford University, July 13, 2012
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Resampling vs. reweighing
Bootstrap Distribution of Wj,ij Reference

Original Multinomial(Nj ; 1/Nj , . . . , 1/Nj) Efron (1979)

Bayesian Wj,ij
iid∼ Exp(1) Rubin (1981)

Poisson Wj,ij
iid∼ Poi(1)

Oza (2001)

Lee & Clyde (2004)

Half sampling Wj,ij
iid∼ U{0, 2} McCarthy (1969)

Independent weights are much simpler to analyze and implement:

data may be spread over servers, countries, continents.

Stanford University, July 13, 2012
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Joys of half-sampling

Wi =
d∏

j=1

Wj,ij where Wj,ij
iid∼ U{0, 2}

Original context was stratified sampling, n = 2 per stratum.

As a bootstrap

• All data get integer weights

• All nonzero weights are equal

• Has minimal kurtosis subject to mean = variance = 1.

Each bootstrap computation is the same as the original one but with about 2−rN observations.

Stanford University, July 13, 2012
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True variance (homog. case)
Recall

Xi = µ+
∑
u 6=∅

εi,u

V (εi,u) = σ2
u, and let

N ≡
∑
i

Zi.

Then

µ̂ =
1

N

∑
i

ZiXi

VRE(µ̂) =
1

N2

∑
u 6=∅

(∑
i

∑
i′

ZiZi′1iu=i′u

)
σ2
u ≡

1

N

∑
u 6=∅

νuσ
2
u

νu ≡
1

N

∑
i

∑
i′

ZiZi′1iu=i′u

Stanford University, July 13, 2012
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Our examples

VRE(µ̂) ≡ 1

N

∑
u6=∅

νuσ
2
u

.
=

1

N

(
56,200σ2

movies + 646σ2
viewers + σ2

interaction

)
(for Netflix)

For Facebook

νsh
.
= 17.71, νcom

.
= 7.71, ν url

.
= 26,854.92 !

νsh,com
.
= 5.92, νsh,url

.
= 12.91, νcom,url

.
= 5.19, and

νsh,com,url
.
= 4.88.

νurl > 26,000

Stanford University, July 13, 2012
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Naive bootstrap (homog. case)

VRE(µ̂) =
1

N

∑
u 6=∅

νuσ
2
u

ERE(VNB(µ̂∗)) =
1

N

∑
u 6=∅

(
1− νu

N

)
σ2
u O and Eckles (2011)

Typically 1� νu � N for u 6= {1, . . . , r}

Note: VNB(µ̂∗) is what the bootstrap settles down to in B →∞ resamplings.

Stanford University, July 13, 2012
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Product bootstrap

µ̂∗ =

∑
i ZiWiXi∑
i ZiWi

≡ T ∗

N∗
(ratio estimator)

VPW(µ̂∗) ≈ ṼPW(µ̂∗) ≡ 1

N2
EPW

(
(T ∗ − µ̂N∗)2

)
(as B →∞)

The delta method is reliable for large data

(Chamandy, Muralidharan, Najmi (2011))

Main result

ERE(ṼPW(µ̂∗)) =
1

N

∑
u 6=∅

γuσ
2
u

where γu ≈ νu if |u| = 1, (i.e. cardinality 1)

otherwise small γu/νu > 1
Stanford University, July 13, 2012
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Exact formula depends on
Notation Definition Meaning

Ni,u

∑
i′ Zi′1iu=i′u Match i in u

νu N−1
∑

i ZiNi,u Avg # matches on u

Exact result γu =

r∑
k=0

(1 + τ2)k(νk,u − 2ν̃k,u + ρkνu) non-asymptotic

ERE(ṼPW(µ̂∗)) =
1

N

∑
u6=∅

γuσ
2
u

Fine print from article

• νk,u depends on the number of i, i′ pairs that match in precisely k indices,

including those in u.

• ν̃k,j depends on the number of triples i, i′, i′′ where i matches i′ in the set u and

matches i′′ in precisely k indices.

Stanford University, July 13, 2012
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Approximations
The exact formula captures some bad cases. We can often simplify them.

Extreme level duplication

e.g. N/2 obs in row 1 and N/2 obs in col 1.

effective sample size is about one or two

Formulas simplify if level duplication is not extreme.

Variable duplication

Almost every record that matches on some variables matches on a superset of those variables

e.g. match name and phone number⇒ usually match fax number

match age and zip code ; match occupation

Stanford University, July 13, 2012
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Duplication indices
(level dup) ε = max

i
max
u 6=∅

Ni,u

N
= max

i
max
16j6r

Ni,{j}

N

(variable dup) η = max
∅(u(v

νv
νu

= max
∅(u(v

νv
νu

Examples

ε η

Netflix 232,944
100,480,507

.
= 0.00232 1

646

.
= 0.00155

Miss Congeniality νinteraction/νmovies

Facebook 686,990
18,134,419

.
= 0.0379 4.88

5.19

.
= 0.94

a popular URL νsh,com,url/νcom,url

η is not small for the Facebook data

bootstrap variances will be somewhat more conservative
Stanford University, July 13, 2012
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Approximations
Theorem 1. In the homogeneous random effects model, the product weight bootstrap with

V (Wj,ij ) = τ2 = 1, satisfies

γu = νu[2|u| − 1 + Θuε] +
∑
v)u

2|v|νv,

where |Θu| 6 2r+1 − 2.

Proof. O & Eckles (2011), who consider general τ2.

For small ε and r (i.e. 2rε� 1)

γu ≈ (2|u| − 1)νu +
∑
v)u

2|v|νv

If also η � 1

γu ≈ (2|u| − 1)νu

Stanford University, July 13, 2012
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Some specific approximations
For r = 2

γ{j} = ν{j}(1 + Θjε) + 2 j = 1, 2

γ{1,2} = ν{1,2}(3 + Θ{1,2}ε), where

|Θu| 6 6.

For r = 3

γ{1} ≈ ν{1} + 4ν{1,2} + 4ν{1,3} + 8

γ{1,2} ≈ 3ν{1,2} + 8

γ{1,2,3} ≈ 7.

If 0 < m 6 minu σ
2
u 6 maxu σ

2
u 6M <∞ then

ERE(ṼPW(µ̂∗))

VRE(µ̂)
= 1 +O(η + ε).

Stanford University, July 13, 2012
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Facebook loquacity
For each commenter, url and sharer, we obtain:

X = log(#char in comment) as well as,

country c ∈ {US,UK} of commenter, and

mode m ∈ {web,mobile} of commenter.

Now let

µ̂cm =

∑
i ZiXi1country=c1mode=m∑
i Zi1country=c1mode=m

We see small differences

US UK

web 3.62 3.55

mobile 3.50 3.57

but they’re larger than sample fluctuations

Stanford University, July 13, 2012
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Loquacity ECDFs

Mean log characters for US minus mean log characters for UK

E
m

pi
ric

al
 C

D
F

0.0

0.2

0.4

0.6

0.8

1.0

−0.10 −0.08 −0.06 −0.04

Mobile

0.05 0.06 0.07 0.08 0.09 0.10

Web

commenter commenter, sharer commenter, sharer, URL

ECDF over 50 bootstraps of µ̂USm − µ̂UKm

Reweighting one, two, or three ways

Stanford University, July 13, 2012
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Loquacity confidence intervals

Mean log characters for US minus mean log characters for UK

commenter

commenter, sharer

commenter, sharer, URL

−0.10 −0.08 −0.06 −0.04

Mobile

0.05 0.06 0.07 0.08 0.09 0.10

Web

Central 95% confidence intervals from 50 bootstraps of µ̂USm − µ̂UKm

Reweighting one, two, or three ways

Stanford University, July 13, 2012



MMDS 2012 29

Heteroscedastic random effects
Every u ⊆ {1, 2, . . . , r} and every iu ∈ N|u| has it’s own variance

σ2
i,u ≡ σ2

iu,u

We cannot estimate them all.

There may be association between σ2
i,u and Ni,u.

The analysis now has

VRE(µ̂) =
1

N

∑
u

∑
i

νi,uσ
2
i,u, and

ERE(ṼPW(µ̂∗)) =
1

N

∑
u

∑
i

γi,uσ
2
i,u

Product weights still give a mildly conservative variance, with relative error 1 +O(η + ε)

assuming uniform bounds:

0 < m 6 min
i,u

σ2
i,u 6 max

i,u
σ2
i,u 6M <∞.

Stanford University, July 13, 2012
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Whence such heteroscedasticity?
Fixed factor F and random mean zero loading L

Xi = µ+ · · ·+ Fi1Li2 + · · ·+ εi,{1,...,r}

contributes F 2
i1
V (Li2) to σ2

i,{i2}.

We could have both fixed i1 × random i2 and vice versa

More generally

For v 6= ∅ and u ∩ v = ∅ ∏
j∈u

Fj,ij ×
∏
j∈v

Lj,ij

contributes
∏

j∈u F
2
h,ij

∏
j∈v V (Lj,ij ) to σ2

i,v when Lj,ij are independent.

Factors and loadings don’t have to be products

e.g. F = Φ(i1, i2, i3) fixed & L = Λ(i4, i5) indep mean 0

F × L contributes to σ2
i,{4,5}

So the model allows for generalized SVD contributions.
Stanford University, July 13, 2012
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Gaps and potential next steps
1) The resampler does not imitate the generative model

2) Handling informative missing data

3) Inference for marginal means

X̄i,u =

∑
i′ Zi′1iu=i′u

Xi′∑
i′ Zi′1iu=i′u

4) Defining, estimating, and inferring variance components

5) Inference for estimated factor models

6) What about B = 1, B < 1?

Stanford University, July 13, 2012
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The unistrap
Definition ṼPW(µ̂∗) ≡ 1

N2EPW

(
(T ∗ − µ̂N∗)2

)
Estimate

̂̃
VPW(µ̂∗) = 1

N2
1
B

∑B
b=1(T ∗b − µ̂N∗b)2

The b’th independent bootstrap produces (T ∗b, N∗b) for b = 1, . . . , B

Because we’re using the ratio estimation formula the estimate exists for B = 1.

(and maybe for fractional sampling B < 1)

Stanford University, July 13, 2012
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Modelling Zi
• We do not model the missingness

• Analysis is conditional on Zi

• Make no use/estimate of Xi for Zi = 0

Can/should we do that?

• Missingness is very important

• Less so if you’re predicting ratings that were actually made

• Modelling Xi for Zi = 0 requires untestable assumptions (from outside the data)

• Later: use preferred imputation. Resample the result. MC based variance with

expert’s view of bias.

Stanford University, July 13, 2012
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Repeated measures
Formally, the model has no duplicate indices

In practice we may get multiple observations at any i

We are studying sums for each i. This is heteroscedastic (for unequal sample sizes).

Alternative

We can adjoin an r + 1st index

This index describes a random effect nested within the first r effects

Best to have extra index be a unique data point identifier to avoid large ε

We could have s crossed random effects nested within each level of the first r effects

It fits into the model with

r′ = r + s and σ2
u = 0 whenever

u ∩ {r + 1, . . . , r + s} 6= ∅ and u ∩ {1, 2, . . . , r + s} 6= {1, 2, . . . , r + s}

Stanford University, July 13, 2012
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Exact formula depends on
Notation Definition Meaning

Ni,u

∑
i′ Zi′1iu=i′u Match i in u

νu N−1
∑

i ZiNi,u Avg # matches on u

Mii′ {j | ij = i′j} Match set for i & i′

Ni,k

∑
i′ Zi′1|Mii′ |=k Match i in exactly k places

ρk N−1
∑

i ZiNi,k Avg # k-matches

νk,u N−2
∑

i

∑
i′ ZiZi′1|Mii′ |=k1iu=i′u Match k places including u

ν̃k,u N−3
∑

i

∑
i′
∑

i′′ ZiZi′Zi′′1|Mii′ |=k1iu=i′′u
Hmmm

” N−1
∑

iNi,uNi,k

Exact result γu =

r∑
k=0

(1 + τ2)k(νk,u − 2ν̃k,u + ρkνu) non-asymptotic

ERE(ṼPW(µ̂∗)) =
1

N

∑
u6=∅

γuσ
2
u Stanford University, July 13, 2012
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Some history

Boot-II was called Boot-p,i by Brennan, Harris Hanson (1987)

p,i stands for person, item

They wanted to bootstrap variance component estimates in educational testing

(students× questions).

McCullagh (2000) showed it was impossible

McCullagh (2000) has two different Boot-II algorithms, one for nested data

See also Wiley (2001).

Stanford University, July 13, 2012


