Bootstrapping r-Fold Tensor Data

Art B. OwenDean EcklesStanford UniversityFacebook Inc.

1

The IID bootstrap

- data are IID F
- ullet we resample IID from the empirical distribution \widehat{F}
- getting variance estimates and confidence intervals

We like it because

- face value validity (or at least explainability)
- deep theory for \bar{X} vs. $\mathbb{E}(X)$
- extensions to more general statistics

Bootstrap (and cross-validation) let us use very mild assumptions:

- 1) IID data, and
- 2) non-pathological moments.

IID data vectors

_	Variable 1	• • •	Variable C
Case 1			
÷			
Case R			

- 1) Variables are named entities:
 - \circ E.g. pressure, volume, income \cdots
 - They persist
- 2) Cases are anonymous replicates
 - \circ Sampled IID from some F
 - Of no inherent interest
 - \circ We'd rather just know F

For IID data · · ·

... we only care about cases because they show relationships among variables. Stanford University, July 13, 2012

Two-way data

Rating	Viewer 1	Viewer 2	Viewer 3	•••	Viewer C
Movie 1	4	4	1	•••	4
Movie 2	5	5	NA	• • •	NA
Movie 3	3	3	NA	•••	2
:		:	:	•••	:
Movie R	NA	5	3	•••	4

More examples of two-way data:

genes	X	environments	\rightarrow	crop yields
terms	×	documents	\rightarrow	counts
candidate	×	interviewer	\rightarrow	rating
nodes	\times	more nodes	\rightarrow	labeled edges

Tensor data

r-way data, i.e. an r-tuple of named entities. For example:

Suppose thatcustomer Ucomes fromcomputer (machine) Mentersquery Qreadsreview Rbuysbook Bwith credit cardbook Cships toaddress A

Then Amazon's logs get (U, M, Q, R, B, C, A) among other variables (such as price paid). While r = 2 is most common, r > 2 arises frequently.

Tuples

	Movie	Viewer	Rating	 Now cases are anonymous
Case 1	1	1	4	 We don't store the NAs
Case 2	1	2	4	• 2 categorical variables
Case 3	2	1	5	with lots of levels
				Not independent:
:	:	:	:	 Cases 1 & 2 share a movie
Case N	R	С	4	 Cases 1 & 3 share a viewe

How should we bootstrap and cross-validate data like this? What about r>2? Maybe large N means no meaningful uncertainty.

Random effects model

$$\begin{split} X_{ij} &= \mu + a_i + b_j + \varepsilon_{ij} \quad i = 1, \dots, R \quad j = 1, \dots, C \\ a_i &\sim \mathcal{N}(0, \sigma_A^2) \quad \text{e.g. plants} \\ b_j &\sim \mathcal{N}(0, \sigma_B^2) \quad \text{e.g. environments} \\ \varepsilon_{ij} &\sim \mathcal{N}(0, \sigma_E^2) \end{split}$$

Used in agricultureNo bootstrap exists for $V(\hat{\mu})$ Studied for decadesNone can exist \cdots $\hat{\mu}$ is $\bar{X}_{\bullet\bullet}$ \cdots McCullagh (2000)

We can't even bootstrap a balanced X !

What about classical approaches?

prime reference:

- Excellent for balanced Gaussian data
- Unbalance \implies invert large matrices
- Emphasis on homogeneous variances

McCullagh (2000)

For
$$\hat{\mu} = \bar{X}_{\bullet \bullet} = \frac{1}{R} \frac{1}{C} \sum_{i=1}^{R} \sum_{j=1}^{C} X_{ij}$$

- **Boot-I** Resample from N = RC values
- **Boot-II** Resample R rows and resample C columns (indep)

$$\begin{split} V(\hat{\mu}) &= \frac{\sigma_A^2}{R} + \frac{\sigma_B^2}{C} + \frac{\sigma_E^2}{RC} & \text{true var} \\ \mathbb{E}(\hat{V}_{\mathrm{I}}(\hat{\mu})) &\doteq \left(\sigma_A^2 + \sigma_B^2 + \sigma_E^2\right) \frac{1}{RC} & \text{way too small} \\ \mathbb{E}(\hat{V}_{\mathrm{II}}(\hat{\mu})) &\doteq \frac{\sigma_A^2}{R} + \frac{\sigma_B^2}{C} + \frac{3\sigma_E^2}{RC} & \text{not so bad} \end{split}$$

Boot-I is seriously flawed, Boot-II is close

The case r = 2

O (2007)

Independent bootstrap of rows and columns

Allows for missing data \cdots but conditions on pattern of observed data

Allows non-homogeneous $V(a_i),\,V(b_j)$ and $V(\varepsilon_{ij})$

Still get $\mathbb{E}(\widehat{V}_{\mathrm{B}}(\widehat{\mu})) \doteq V(\widehat{\mu})$, i.e.

Still get $\approx 1 \times$ the main effect contribution

pprox 3 imes the interaction contribution

On Netflix data ... naive bootstrap can under-estimate variance by 56,200 fold

Sunday vs. Tuesday edge of $0.02 \ {\rm stars}$ is real

mimics pigeonhole model of Cornfield & Tukey (1956)

Fine print:

uniform bounds on variances, and no row/column has more than ϵ of the data

Goals

We would like to get an approximate bootstrap for arbitrary data patterns with $r \ge 2$. We focus on getting the variance approximately right.

Challenge	Today
What happens to that ${f 3}$ for $r>2$?	٠
There are many missing data values.	•
Missingness might be informative.	•
The entities might have unequal variances.	•
We might want a little more than $ar{X}.$	•
We might want a lot more than $ar{X}$.	•

Illustrative data sets

Netflix

 $N=100,\!480,\!507$ ratings, by $480,\!189$ customers, on $17,\!770$ movies X is 1 to 5 stars used in famous contest

Facebook

 $\begin{array}{l} 18,\!134,\!419 \text{ comments} \\ \text{by } 8,\!078,\!531 \text{ commenters} \\ \text{on } 2,\!085,\!639 \text{ URLs} \\ \text{shared by } 3,\!904,\!715 \text{ sharers} \\ X \text{ is } \log(\texttt{\# chars in comment}) \end{array}$

Example

Alice (shares a URL) "Hey, check out http://stat.stanford.edu"

- **Bob** (comments on it) "Thanks for sharing that, I learned a lot."
- **Data** url = http://stat.stanford.edu

sharer = Alice

commenter = Bob

log length $X = \log(41) \doteq 3.71$

Random effects: *r*-way case

 $\begin{array}{ll} \mbox{Index} & {\pmb i} = (i_1, i_2, \dots, i_r) \in \{1, 2, 3, \dots\}^r \\ \mbox{Sub-index} & {\pmb i}_u = (i_{j_1}, \dots, i_{j_L}) & u = \{j_1, \dots, j_L\} \subseteq \{1, 2, \dots, r\} \\ \mbox{Data} & X_{\pmb i} \in \mathbb{R}^d & \mbox{short for } X_{i_1, i_2, \dots, i_r} & \mbox{use } d = 1 \\ \mbox{Presence} & Z_{\pmb i} \in \{0, 1\} \end{array}$

We model a random effect for each non-empty $u \subseteq \{1, 2, \ldots, r\}$.

$$\begin{split} X_{i} &= \mu + \sum_{u \neq \varnothing} \varepsilon_{i,u} \\ \mathbb{E}(\varepsilon_{i,u}) &= 0 \\ \mathrm{Cov}(\varepsilon_{i,u}, \varepsilon_{i',u'}) &= \sigma_{i,u}^{2} \mathbf{1}_{u=u'} \mathbf{1}_{i_{u}=i'_{u}} \end{split}$$

Homogeneous special case

$$\sigma_{\boldsymbol{i},u}^2 \equiv \sigma_u^2 \quad \forall \, \boldsymbol{i} \in \mathbb{N}^r \quad \forall \, u \subseteq \{1,\ldots,r\}$$

13

The product reweighted bootstrap

$$\hat{\mu} = \frac{\sum_{i} Z_{i} X_{i}}{\sum_{i} Z_{i}} \quad \text{and} \quad \hat{\mu}^{*} = \frac{\sum_{i} Z_{i} W_{i} X_{i}}{\sum_{i} Z_{i} W_{i}}$$

Our reweighting

$$W_{m i}=\prod_{j=1}^r W_{j,i_j}$$
 $\mathbb{E}(W_{j,i_j})=1$ all indep. $V(W_{j,i_j})= au^2$ usually $au^2=1$

Resampling vs. reweighing

Bootstrap	Distribution of W_{j,i_j}	Reference
Original	Multinomial $(N_j; 1/N_j, \dots, 1/N_j)$	Efron (1979)
Bayesian	$W_{j,i_j} \stackrel{\mathrm{iid}}{\sim} Exp(1)$	Rubin (1981)
Poisson	$W_{i,i} \stackrel{\text{iid}}{\sim} Poi(1)$	Oza (2001)
	J, v_J ()	Lee & Clyde (2004)
Half sampling	$W_{j,i_j} \stackrel{\text{iid}}{\sim} \mathbf{U}\{0,2\}$	McCarthy (1969)

Independent weights are much simpler to analyze and implement: data may be spread over servers, countries, continents.

Joys of half-sampling

$$W_{\boldsymbol{i}} = \prod_{j=1}^{d} W_{j,i_j}$$
 where $W_{j,i_j} \stackrel{\mathrm{iid}}{\sim} \mathbf{U}\{0,2\}$

Original context was stratified sampling, n = 2 per stratum.

As a bootstrap

- All data get integer weights
- All nonzero weights are equal
- Has minimal kurtosis subject to mean = variance = 1.

Each bootstrap computation is the same as the original one but with about $2^{-r}N$ observations.

True variance (homog. case)

Recall

$$\begin{split} X_{i} &= \mu + \sum_{u \neq \varnothing} \varepsilon_{i,u} \\ V(\varepsilon_{i,u}) &= \sigma_{u}^{2}, \quad \text{and let} \\ N &\equiv \sum_{i} Z_{i}. \end{split}$$

Then

Stanford University, July 13, 2012

.

Our examples

$$\begin{split} V_{\mathsf{RE}}(\hat{\mu}) &\equiv \frac{1}{N} \sum_{u \neq \varnothing} \boldsymbol{\nu_u} \sigma_u^2 \\ &\doteq \frac{1}{N} \left(56,200 \sigma_{\mathsf{movies}}^2 + 646 \sigma_{\mathsf{viewers}}^2 + \sigma_{\mathsf{interaction}}^2 \right) \quad \text{(for Netflix)} \end{split}$$

For Facebook

$$u_{\rm sh} \doteq 17.71, \quad \nu_{\rm com} \doteq 7.71, \quad \nu_{\rm url} \doteq 26,854.92 \quad !$$
 $\nu_{\rm sh,com} \doteq 5.92, \quad \nu_{\rm sh,url} \doteq 12.91, \quad \nu_{\rm com,url} \doteq 5.19, \quad \text{and}$
 $\nu_{\rm sh,com,url} \doteq 4.88.$

$\nu_{\rm url} \geqslant 26{,}000$

Naive bootstrap (homog. case)

$$V_{\text{RE}}(\hat{\mu}) = \frac{1}{N} \sum_{u \neq \varnothing} \nu_u \sigma_u^2$$
$$\mathbb{E}_{\text{RE}}(V_{\text{NB}}(\hat{\mu}^*)) = \frac{1}{N} \sum_{u \neq \varnothing} \left(1 - \frac{\nu_u}{N}\right) \sigma_u^2 \qquad \text{O and Eckles (2011)}$$

Typically $1 \ll \nu_u \ll N$ for $u \neq \{1, \ldots, r\}$

Note: $V_{\text{NB}}(\hat{\mu}^*)$ is what the bootstrap settles down to in $B \to \infty$ resamplings.

Product bootstrap

$$\hat{\mu}^* = \frac{\sum_{i} Z_{i} W_{i} X_{i}}{\sum_{i} Z_{i} W_{i}} \equiv \frac{T^*}{N^*} \qquad \text{(ratio estimator)}$$

$$V_{\rm PW}(\hat{\mu}^*) \approx \widetilde{V}_{\rm PW}(\hat{\mu}^*) \equiv \frac{1}{N^2} \mathbb{E}_{\rm PW}\big((T^* - \hat{\mu}N^*)^2 \big) \qquad \text{(as } B \to \infty \text{)}$$

The delta method is reliable for large data (Chamandy, Muralidharan, Najmi (2011))

Main result

$$\begin{split} \mathbb{E}_{\mathrm{RE}}(\widetilde{V}_{\mathrm{PW}}(\hat{\mu}^*)) &= \frac{1}{N}\sum_{u\neq\varnothing}\gamma_u\sigma_u^2 \\ \text{where } \gamma_u\approx\nu_u \quad \text{if} \quad |u|=1, \quad (\text{i.e. cardinality 1}) \\ &\quad \text{otherwise small } \gamma_u/\nu_u>1 \end{split}$$

Stanford University, July 13, 2012

Exact formula depends on

Notation	Definition	Meaning
$N_{oldsymbol{i},u}$	$\sum_{\boldsymbol{i}'} Z_{\boldsymbol{i}'} 1_{\boldsymbol{i}_u = \boldsymbol{i}'_u}$	Match $oldsymbol{i}$ in u
$ u_u$	$N^{-1}\sum_{\boldsymbol{i}} Z_{\boldsymbol{i}} N_{\boldsymbol{i},u}$	Avg # matches on \boldsymbol{u}

Exact result
$$\gamma_u = \sum_{k=0}^{\prime} (1 + \tau^2)^k (\nu_{k,u} - 2\tilde{\nu}_{k,u} + \rho_k \nu_u)$$
 non-asymptotic $\mathbb{E}_{\mathsf{RE}}(\tilde{V}_{\mathsf{PW}}(\hat{\mu}^*)) = \frac{1}{N} \sum_{u \neq \varnothing} \gamma_u \sigma_u^2$

 \boldsymbol{r}

Fine print from article

• $\nu_{k,u}$ depends on the number of i, i' pairs that match in precisely k indices, including those in u.

• $\tilde{\nu}_{k,j}$ depends on the number of triples i, i', i'' where i matches i' in the set u and matches i'' in precisely k indices.

The exact formula captures some bad cases. We can often simplify them.

Extreme level duplication

e.g. N/2 obs in row 1 and N/2 obs in col 1.

effective sample size is about one or two

Formulas simplify if level duplication is not extreme.

Variable duplication

Almost every record that matches on some variables matches on a superset of those variables e.g. match name and phone number \Rightarrow usually match fax number

match age and zip code \Rightarrow match occupation

Duplication indices

(level dup)	$\epsilon = \max_{\mathbf{i}} \max_{u \neq \varnothing} \frac{N_{\mathbf{i},u}}{N} = \max_{\mathbf{i}} \max_{1 \leqslant j \leqslant r}$	$\frac{N_{\boldsymbol{i},\{j\}}}{N}$
(variable dup)	$\eta = \max_{\varnothing \subsetneq u \subsetneq v} \frac{\nu_v}{\nu_u} = \max_{\varnothing \subsetneq u \subsetneq v} \frac{\nu_v}{\nu_u}$	

Examples

	ϵ	η
Netflix	$\frac{232,944}{100,480,507} \doteq 0.00232$	$\frac{1}{646} \doteq 0.00155$
	Miss Congeniality	$ u_{ m interaction}/ u_{ m movies}$
Facebook	$\frac{686,990}{18,134,419} \doteq 0.0379$	$\frac{4.88}{5.19} \doteq 0.94$
	a popular URL	$ u_{ m sh,com,url}/ u_{ m com,url}$

 η is not small for the Facebook data

bootstrap variances will be somewhat more conservative

Approximations

Theorem 1. In the homogeneous random effects model, the product weight bootstrap with $V(W_{j,i_j}) = \tau^2 = 1$, satisfies

$$\gamma_u = \nu_u [2^{|u|} - 1 + \Theta_u \epsilon] + \sum_{v \supseteq u} 2^{|v|} \nu_v,$$

where $|\Theta_u| \leq 2^{r+1} - 2$.

Proof. O & Eckles (2011), who consider general τ^2 .

For small ϵ and r (i.e. $2^r \epsilon \ll 1$)

$$\gamma_u \approx (2^{|u|} - 1)\nu_u + \sum_{v \supseteq u} 2^{|v|} \nu_v$$

If also $\eta \ll 1$

$$\gamma_u \approx (2^{|u|} - 1)\nu_u$$

Some specific approximations For r = 2

$$\begin{split} \gamma_{\{j\}} &= \nu_{\{j\}} (1 + \Theta_j \epsilon) + 2 \quad j = 1, 2 \\ \gamma_{\{1,2\}} &= \nu_{\{1,2\}} (3 + \Theta_{\{1,2\}} \epsilon), \quad \text{where} \\ &|\Theta_u| \leqslant 6. \end{split}$$

For r = 3

$$\begin{split} \gamma_{\{1\}} &\approx \nu_{\{1\}} + 4\nu_{\{1,2\}} + 4\nu_{\{1,3\}} + 8\\ \gamma_{\{1,2\}} &\approx 3\nu_{\{1,2\}} + 8\\ \gamma_{\{1,2,3\}} &\approx 7. \end{split}$$

If $0 < m \leq \min_{u} \sigma_{u}^{2} \leq \max_{u} \sigma_{u}^{2} \leq M < \infty$ then $\frac{\mathbb{E}_{\mathsf{RE}}(\widetilde{V}_{\mathsf{PW}}(\hat{\mu}^{*}))}{V_{\mathsf{RE}}(\hat{\mu})} = 1 + O(\eta + \epsilon).$

Facebook loquacity

For each commenter, url and sharer, we obtain:

$$\begin{split} X &= \log(\text{\#char in comment}) \text{ as well as,} \\ \text{country } c \in \{\text{US}, \text{UK}\} \text{ of commenter, and} \\ \text{mode } m \in \{\text{web, mobile}\} \text{ of commenter.} \end{split}$$

Now let

$$\hat{\mu}_{cm} = \frac{\sum_{i} Z_{i} X_{i} \mathbf{1}_{\text{country}=c} \mathbf{1}_{\text{mode}=m}}{\sum_{i} Z_{i} \mathbf{1}_{\text{country}=c} \mathbf{1}_{\text{mode}=m}}$$

We see small differences

	US	UK
web	3.62	3.55
mobile	3.50	3.57

but they're larger than sample fluctuations

Loquacity ECDFs

Reweighting one, two, or three ways

Loquacity confidence intervals

Mean log characters for US minus mean log characters for UK

Central 95% confidence intervals from 50 bootstraps of $\hat{\mu}_{\text{US}m} - \hat{\mu}_{\text{UK}m}$ Reweighting one, two, or three ways

Heteroscedastic random effects

Every $u \subseteq \{1,2,\ldots,r\}$ and every $m{i}_u \in \mathbb{N}^{|u|}$ has it's own variance

$$\sigma_{\boldsymbol{i},u}^2 \equiv \sigma_{\boldsymbol{i}_u,u}^2$$

We cannot estimate them all.

There may be association between $\sigma_{i,u}^2$ and $N_{i,u}$.

The analysis now has

$$\begin{split} V_{\text{RE}}(\hat{\mu}) &= \frac{1}{N} \sum_{u} \sum_{i} \nu_{i,u} \sigma_{i,u}^{2}, \quad \text{and} \\ \mathbb{E}_{\text{RE}}(\widetilde{V}_{\text{PW}}(\hat{\mu}^{*})) &= \frac{1}{N} \sum_{u} \sum_{i} \gamma_{i,u} \sigma_{i,u}^{2} \end{split}$$

Product weights still give a mildly conservative variance, with relative error $1 + O(\eta + \epsilon)$ assuming uniform bounds:

$$0 < m \leqslant \min_{\boldsymbol{i}, u} \sigma_{\boldsymbol{i}, u}^2 \leqslant \max_{\boldsymbol{i}, u} \sigma_{\boldsymbol{i}, u}^2 \leqslant M < \infty.$$

Stanford University, July 13, 2012

Whence such heteroscedasticity?

Fixed factor ${\cal F}$ and random mean zero loading ${\cal L}$

$$X_{i} = \mu + \dots + F_{i_1}L_{i_2} + \dots + \varepsilon_{i,\{1,\dots,r\}}$$

contributes $F_{i_1}^2 V(L_{i_2})$ to $\sigma_{i,\{i_2\}}^2$. We could have both fixed $i_1 \times \text{random } i_2$ and vice versa

More generally

For $v \neq \emptyset$ and $u \cap v = \emptyset$ $\prod_{j \in u} F_{j,i_j} \times \prod_{j \in v} L_{j,i_j}$ contributes $\prod_{j \in u} F_{h,i_j}^2 \prod_{j \in v} V(L_{j,i_j})$ to $\sigma_{i,v}^2$ when L_{j,i_j} are independent.

Factors and loadings don't have to be products e.g. $F = \Phi(i_1, i_2, i_3)$ fixed & $L = \Lambda(i_4, i_5)$ indep mean 0 $F \times L$ contributes to $\sigma^2_{i,\{4,5\}}$

So the model allows for generalized SVD contributions.

Gaps and potential next steps

- 1) The resampler does not imitate the generative model
- 2) Handling informative missing data
- 3) Inference for marginal means

$$\bar{X}_{\boldsymbol{i},u} = \frac{\sum_{\boldsymbol{i}'} Z_{\boldsymbol{i}'} \mathbf{1}_{i_u = i'_u} X_{\boldsymbol{i}'}}{\sum_{\boldsymbol{i}'} Z_{\boldsymbol{i}'} \mathbf{1}_{i_u = i'_u}}$$

- 4) Defining, estimating, and inferring variance components
- 5) Inference for estimated factor models
- 6) What about B = 1, B < 1?

Thanks

- Dean Eckles for co-authoring
- Netflix and Facebook for data
- Michael Mahoney and other organizers
- NSF DMS-0906056 for support

The unistrap

Definition
$$\widetilde{V}_{PW}(\hat{\mu}^*) \equiv \frac{1}{N^2} \mathbb{E}_{PW}((T^* - \hat{\mu}N^*)^2)$$

Estimate $\widehat{\widetilde{V}_{PW}}(\hat{\mu}^*) = \frac{1}{N^2} \frac{1}{B} \sum_{b=1}^B (T^{*b} - \hat{\mu}N^{*b})^2$

The b 'th independent bootstrap produces $(T^{\ast b},N^{\ast b})$ for $b=1,\ldots,B$

Because we're using the ratio estimation formula the estimate exists for B=1. (and maybe for fractional sampling B<1)

Modelling Z_i

- We do not model the missingness
- Analysis is conditional on Z_i
- Make no use/estimate of X_i for $Z_i = 0$

Can/should we do that?

- Missingness is very important
- Less so if you're predicting ratings that were actually made
- Modelling X_i for $Z_i = 0$ requires untestable assumptions (from outside the data)

• Later: use preferred imputation. Resample the result. MC based variance with expert's view of bias.

Repeated measures

Formally, the model has no duplicate indices

In practice we may get multiple observations at any $m{i}$

We are studying sums for each i. This is heteroscedastic (for unequal sample sizes).

Alternative

We can adjoin an $r + 1^{\rm st}$ index

This index describes a random effect nested within the first r effects

Best to have extra index be a unique data point identifier to avoid large ϵ

We could have s crossed random effects nested within each level of the first r effects It fits into the model with

$$r'=r+s$$
 and $\sigma_u^2=0$ whenever

 $u \cap \{r+1, \ldots, r+s\} \neq \varnothing \quad \text{and} \quad u \cap \{1, 2, \ldots, r+s\} \neq \{1, 2, \ldots, r+s\}$

Exact formula depends on

Notation	Definition	Meaning
$N_{oldsymbol{i},u}$	$\sum_{\boldsymbol{i}'} Z_{\boldsymbol{i}'} 1_{\boldsymbol{i}_u = \boldsymbol{i}'_u}$	Match $oldsymbol{i}$ in u
$ u_u$	$N^{-1}\sum_{\boldsymbol{i}} Z_{\boldsymbol{i}} N_{\boldsymbol{i},u}$	Avg # matches on \boldsymbol{u}
$M_{\boldsymbol{i}\boldsymbol{i}'}$	$\{j \mid i_j = i'_j\}$	Match set for i & i^\prime
$N_{oldsymbol{i},k}$	$\sum_{\boldsymbol{i}'} Z_{\boldsymbol{i}'} 1_{ M_{\boldsymbol{i}\boldsymbol{i}'} =k}$	Match $oldsymbol{i}$ in exactly k places
$ ho_k$	$N^{-1}\sum_{\boldsymbol{i}} Z_{\boldsymbol{i}} N_{\boldsymbol{i},k}$	Avg # k -matches
$ u_{k,u}$	$N^{-2} \sum_{i} \sum_{i'} Z_{i} Z_{i'} 1_{ M_{ii'} =k} 1_{i_u=i'_u}$	Match k places including u
$\widetilde{ u}_{k,u}$	$N^{-3} \sum_{\boldsymbol{i}} \sum_{\boldsymbol{i}'} \sum_{\boldsymbol{i}''} Z_{\boldsymbol{i}''} Z_{\boldsymbol{i}''} 1_{ M_{\boldsymbol{i}\boldsymbol{i}'} =k} 1_{\boldsymbol{i}_u = \boldsymbol{i}''_u}$	Hmmm
"	$N^{-1}\sum_{\boldsymbol{i}}N_{\boldsymbol{i},u}N_{\boldsymbol{i},k}$	
Ex	act result $\gamma_u = \sum_{k=0}^r (1+\tau^2)^k (\nu_{k,u} - 2\widetilde{\nu}_{k,u} + \rho_k)$	$_{z} u_{u})$ non-asymptotic
E	$\mathcal{V}_{RE}(\tilde{V}_{PW}(\hat{\mu}^*)) = \frac{1}{N} \sum_{u \neq \varnothing} \gamma_u \sigma_u^2$	Stanford University, July 13, 2012

Some history

Boot-II was called Boot-p,i by Brennan, Harris Hanson (1987)

p,i stands for person, item

They wanted to bootstrap variance component estimates in educational testing (students \times questions).

McCullagh (2000) showed it was impossible

McCullagh (2000) has two different Boot-II algorithms, one for nested data

See also Wiley (2001).