Implementing Randomized Matrix Algorithms in
Parallel and Distributed Environments

Michael W. Mahoney

Stanford University
(For more info, see:

http:// cs.stanford.edu/people/mmahoney/
or Google on “Michael Mahoney”)

July 2012

Mahoney (Stanford) Implementing Randomized Matrix Algorithms July 2012 1/39

Outline

© Randomized matrix algorithms and large-scale environments

Motivation: very large-scale “vector space analytics”

Small-scale and medium-scale:
@ Model data by graphs and matrices

@ Compute eigenvectors, correlations, etc. in RAM

Very large-scale:
@ Model data with flat tables and the relational model

e Compute with join/select and other “counting” in, e.g., Hadoop
Can we “bridge the gap” and do "vector space computations” at very
large scale?

@ Not obviously yes: exactly computing eigenvectors, correlations, etc. is
subtle and uses lots of comminication.

@ Not obviously no: lesson from random sampling algorithms is you can get
e-approximation of optimal with very few samples.

Mahoney (Stanford) Implementing Randomized Matrix Algorithms July 2012 3 /39

Over-determined /over-constrained regression problems

An ¢, regression problem is specified by a design matrix A € R™*", a
response vector b € R™, and a norm || - || :

minimizeycrn ||Ax — bl|p.

Assume m > n, i.e., many more “constraints”’ than ‘“variables.” Given an
e >0, find a (1 + €)-approximate solution X in relative scale, i.e.,

A% = bllp < (1 + €)[|AX" — b]|,

where x* is a/the optimal solution.

@ p = 2: Least Squares Approximation: Very widely-used, but highly
non-robust to outliers.

@ p = 1: Least Absolute Deviations: Improved robustness, but at the
cost of increased complexity.

v

Mahoney (Stanford) Implementing Randomized Matrix Algorithms July 2012 4 /39

Strongly rectangular data

Some examples:

m n
SNP | number of SNPs (10°) number of subjects (10%)
Tinylmages number of pixels in each image (103) number of images (108)
PDE number of degrees of freedom number of time steps
sensor network size of sensing data number of sensors
NLP number of words and n-grams number of principle components

More generally:

@ Over-constrained {1 /{» regression is good model for implementing
other regression algorithms in large-scale settings.

@ Best advances for low-rank matrix problems come by considering the
underlying regression problem.

Mahoney (Stanford) Implementing Randomized Matrix Algorithms July 2012 5/ 39

Traditional algorithms

o for /; regression:
» direct methods: QR, SVD, and normal equation (O(mn? + n?) time)

* Pros: high precision & implemented in LAPACK
* Cons: hard to take advantage of sparsity & hard to implement in
parallel environments

» iterative methods: CGLS, LSQR, etc.

* Pros: low cost per iteration, easy to implement in some parallel
environments, & capable of computing approximate solutions
* Cons: hard to predict the number of iterations needed
o for /; regression:

> linear programming

> interior-point methods (or simplex, ellipsoid? methods)

> re-weighted least squares

> first-order methods

Nearly all traditional algorithms for low-rank matrix problems, continuous
optimization problems, etc. boil down to variants of these methods.

Mahoney (Stanford) Implementing Randomized Matrix Algorithms July 2012 6 /39

Why randomized matrix algorithms?

Traditional algorithms are designed to work in RAM and their performance
is measured in floating-point operations per second (FLOPS).

o Traditional algorithms are NOT well-suited for:
problems that are very large

» distributed or parallel computation

» when communication is a bottleneck

» when the data must be accessed via “passes”

v

@ Randomized matrix algorithms are:
> faster: better theory
» simpler: easier to implement
> inherently parallel: exploiting modern computer architectures
» more scalable: modern massive data sets

Big success story in high precision scientific computing applications!
Can they really be implemented in parallel and distributed environments?

Mahoney (Stanford) Implementing Randomized Matrix Algorithms July 2012 7 /39

Parallel environments and how they scale

@ Shared memory
» cores: [10,10%]*
» memory: [100GB, 100TB]
@ Message passing
» cores: [200,10°]f
» memory: [1TB,1000TB]
» CUDA cores: [5 x 10%,3 x 105]#
» GPU memory: [500GB, 20TB]
@ MapReduce
» cores: [40,10%]%
» memory: [240GB, 100TB]
» storage: [L00TB, 100PB]Y
@ Distributed computing
» cores: [—,3 x 10°]/l.

http://www.sgi.com/pdfs/4358.pdf

*
Thttp://www.topsoo .org/list/2011/11/100

3;http://i .top500.org/site/50310
§http://www.cloudera.com/blog/2010/04/pushing-the-limits-of-distributed-processing/
11http://hortonworks.com/blog/an—introduction—to—hdfs—federation/

Il

http://fah-web.stanford.edu/cgi-bin/main.py?qtype=osstats
Mahoney (Stanford) Implementing Randomized Matrix Algorithms July 2012

8 /39

http://www.sgi.com/pdfs/4358.pdf
http://www.top500.org/list/2011/11/100
http://i.top500.org/site/50310
http://www.cloudera.com/blog/2010/04/pushing-the-limits-of-distributed-processing/
http://hortonworks.com/blog/an-introduction-to-hdfs-federation/
http://fah-web.stanford.edu/cgi-bin/main.py?qtype=osstats

Two important notions: leverage and condition

(Mahoney, “Randomized Algorithms for Matrices and Data,” FnTML, 2011.)

o Statistical leverage. (Think: eigenvectors. Important for low-precision.)
» The statistical leverage scores of A (assume m > n) are the diagonal
elements of the projection matrix onto the column span of A.
» They equal the f>-norm-squared of any orthogonal basis spanning A.
» They measure:
* how well-correlated the singular vectors are with the canonical basis
* which constraints have largest “influence” on the LS fit
* a notion of “coherence” or “outlierness”
» Computing them exactly is as hard as solving the LS problem.
o Condition number. (Think: eigenvalues. Important for high-precision.)

» The ¢-norm condition number of A is k(A) = omax(A) /ot (A).
» x(A) bounds the number of iterations; for ill-conditioned problems
(e.g., k(A) ~ 10° >> 1), the convergence speed is very slow.

» Computing k(A) is generally as hard as solving the LS problem.

These are for the ¢>-norm. Generalizations exist for the ¢1-norm.

Mahoney (Stanford) Implementing Randomized Matrix Algorithms July 2012 9 /39

Meta-algorithm for £,-norm regression (1 of 2)

(Drineas, Mahoney, etc., 2006, 2008, etc., starting with SODA 2006; Mahoney FnTML, 2011.)

1: Using the /5 statistical leverage scores of A, construct an importance
sampling distribution {p;}7 ;.

2: Randomly sample a small number of constraints according to {p;}T,
to construct a subproblem.

3: Solve the ¢>-regression problem on the subproblem.

A naive version of this meta-algorithm gives a 1 + € relative-error
approximation in roughly O(mn?/€) time (DMM 2006, 2008). (Ugh.)

Mahoney (Stanford) Implementing Randomized Matrix Algorithms July 2012 10 / 39

Meta-algorithm for £,-norm regression (2 of 2)

(Drineas, Mahoney, etc., 2006, 2008, etc., starting with SODA 2006; Mahoney FnTML, QOll.ﬁ)

A naive version of this meta-algorithm gives a 1 + € relative-error
approximation in roughly O(mn?/¢) time (DMM 2006, 2008). (Ugh.)

But, we can make this meta-algorithm “fast” in RAM:**
@ This meta-algorithm runs in O(mnlogn/e) time in RAM if:
» we perform a Hadamard-based random random projection and sample
uniformly sampling in the randomly rotated basis, or
» we quickly computing approximations to the statistical leverage scores
and using those as an importance sampling distribution.
And, we can make this meta-algorithm “high precision” in RAM:T
@ This meta-algorithm runs in O(mnlog nlog(1/¢)) time in RAM if:

» we use the random projection/sampling basis to construct a
preconditioner and couple with a traditional iterative algorithm.

o (Sarlés 2006; Drineas, Mahoney, Muthu, Sarlés 2010; Drineas, Magdon-Ismail, Mahoney, Woodruff 2011.)
(Rokhlin & Tygert 2008; Avron, Maymounkov, & Toledo 2010; Meng, Saunders, & Mahoney 2011.)
(Mahoney, “Randomized Algorithms for Matrices and Data,” FnTML, 2011.)

Mahoney (Stanford) Implementing Randomized Matrix Algorithms July 2012 11 /39

Outline

© Solving /> regression using MPI
@ Preconditioning
@ lteratively solving

Algorithm LSRN (for strongly over-determined systems)

(Meng, Saunders, and Mahoney 2011)

A

Choose an oversampling factor v > 1, e.g., v = 2. Set s = [yn].

Generate G = randn(s, m), a Gaussian matrix.
Compute A= GA.

Compute A’s economy-sized SVD: US V7.

Let N = V¥—1.

Iteratively compute the min-length solution ¥ to

minimize,cr- ||ANy — b||».

: Return X = Ny.

Mahoney (Stanford) Implementing Randomized Matrix Algorithms July 2012

13 / 39

Why we choose Gaussian random projection

(Meng, Saunders, and Mahoney 2011)

Gaussian random projection
@ has the best theoretical result on conditioning,
@ can be generated super fast,
@ uses level 3 BLAS on dense matrices,
@ speeds up automatically on sparse matrices and fast operators,

o still works (with an extra “allreduce” operation) when A is partitioned
along its bigger dimension.

So, although it is “slow” (compared with “fast” Hadamard-based
projections i.t.o. FLOPS), it allows for better communication properties.

Mahoney (Stanford) Implementing Randomized Matrix Algorithms July 2012 14 / 39

Theoretical properties of LSRN

(Meng, Saunders, and Mahoney 2011)

In exact arithmetic, X = x* almost surely.

The distribution of the spectrum of AN is the same as that of the
pseudoinverse of a Gaussian matrix of size s X r.

k(AN) is independent of all the entries of A and hence x(A).
For any a € (0,1 — 4/r/s), we have

P </<;(AN) < 1to+r/s Vr/s) >1-2e /2,

l—a—+/r/s

where r is the rank of A.

So, if we choose s = 2n > 2r, we have kK(AN) < 6 w.h.p., and hence we

only need around 100 iterations to reach machine precision.

Mahoney (Stanford) Implementing Randomized Matrix Algorithms July 2012

15 / 39

Implementation of LSRN

(Meng, Saunders, and Mahoney 2011)

@ Shared memory (C++ with MATLARB interface)

» Multi-threaded ziggurat random number generator (Marsaglia and Tsang
2000), generating 10° numbers in less than 2 seconds using 12 CPU
cores.

» A naive implementation of multi-threaded dense-sparse matrix
multiplications.

@ Message passing (Python)
> Single-threaded BLAS for matrix-matrix and matrix-vector products.
» Multi-threaded BLAS/LAPACK for SVD.
» Using the Chebyshev semi-iterative method (Golub and Varga 1961)
instead of LSQR.

Mahoney (Stanford) Implementing Randomized Matrix Algorithms July 2012 16 / 39

Solving real-world problems

matrix m n nnz rank cond DGELSD A\ b Blendenpik LSRN
landmark 71952 2704 1.15e6 2671 1.0e8 29.54 0.6498* - 107755
rail4284 4284 1.1e6 1.1e7 full 400.0 > 3600 1.203* OOoM 136.0
tnimg-1 951 le6 2.1e7 925 - 630.6 1067~ - 36.02
tnimg-2 1000 2e6 4.2e7 981 - 1291 > 3600 > 72.05
tnimg_3 1018 3e6 6.3e7 1016 - 2084 > 3600" - 111.1
tnimg_4 1019 4e6 8.4e7 1018 = 2945 > 3600 = 147.1
tnimg_5 1023 5e6 1.1e8 full - > 3600 > 3600" OOM 188.5

Table: Real-world problems and corresponding running times. DGELSD doesn’t
take advantage of sparsity. Though MATLAB's backslash may not give the
min-length solutions to rank-deficient or under-determined problems, we still
report its running times. Blendenpik either doesn’t apply to rank-deficient
problems or runs out of memory (OOM). LSRN's running time is mainly
determined by the problem size and the sparsity.

Mahoney (Stanford)

Implementing Randomized Matrix Algorithms

July 2012 17 / 39

LSQR (Paige and Saunders 1982)

Code snippet (Python):

u A.matvec(v) — alphaxu
beta = sqrt(comm. allreduce (np.dot(u,u)))

v = comm. allreduce (A.rmatvec(u)) — betaxv

Cost per iteration:
@ two matrix-vector multiplications

@ two cluster-wide synchronizations

Mahoney (Stanford) Implementing Randomized Matrix Algorithms July 2012

18 / 39

Chebyshev semi-iterative (CS) method (Golub and Varga 1961)

The strong concentration results on 0™ (AN) and c™"(AN) enable use

of the CS method, which requires an accurate bound on the extreme
singular values to work efficiently.

Code snippet (Python):

v = comm. allreduce (A.rmatvec(r)) — betaxv
x += alphaxv
r — alphaxA.matvec(v)

Cost per iteration:
@ two matrix-vector multiplications

@ one cluster-wide synchronization

Mahoney (Stanford) Implementing Randomized Matrix Algorithms July 2012 19 / 39

LSQR vs. CS on an Amazon EC2 cluster

(Meng, Saunders, and Mahoney 2011)

solver Niodes | Nprocesses m n nnz_ | Niter | Titer | Ttotal

RS 2 | e o [[oar | |0 TS

LsRNwjtsgr | 5 | 10 [0 | 1er |21 | 0T ST NS

LsRNwj Lsqr | 10 | 20 |12 | 2e7 [a2es | T IS 2000

LSRNwjLsqr | 2 | 40 | 1028 | 7| maes | TT0| 1570 | 200
)

Table: Test problems on an Amazon EC2 cluster and corresponding running times
in seconds. Though the CS method takes more iterations, it actually runs faster
than LSQR by making only one cluster-wide synchronization per iteration.

Mahoney (Stanford) Implementing Randomized Matrix Algorithms July 2012 20 / 39

Outline

9 Solving ¢1 regression on MapReduce
@ Problem formulation and preconditioning
@ Computing a coarse solution
o Computing a fine solution

Problem formulation

We use an equivalent formulation of /1 regression, which consists of a
homogeneous objective function and an affine constraint:

minimize,crn || Ax||1

subject to c’x=1.

Assume that A € R™*" has full column rank, m > n, and ¢ # 0.

Mahoney (Stanford) Implementing Randomized Matrix Algorithms July 2012 22 /39

Condition number, well-conditioned bases, and leverage
scores for the ¢1-norm

e A matrix U € R™" is (a, 8, p = 1)-conditioned if |U|; < o and
IIx]|loo < Bl|Ux|]1, ¥x; and £1-well-conditioned if «, 5 = poly(n).

@ Define the /1 leverage scores of an m X n matrix A, with m > n, to
be the /1-norms-squared of the rows of an ¢;-well-conditioned basis of
A. (Only well-defined up to poly(n) factors.)

o Define the ¢1-norm condition number of A, denoted by x1(A), as:

Kl(A) _ J{“E.‘X(A) _ MaX||x|,=1 ||AXH1 '
o"(A) minjy,=1 [|Ax]l1

This implies: o7 (A)|x||2 < [|Ax[l < o7 (A)|Ix]l2, Vx € R™.

Mahoney (Stanford) Implementing Randomized Matrix Algorithms July 2012 23 /39

Meta-algorithm for £;-norm regression

1: Using an #;1-well-conditioned basis for A, construct an importance
sampling distribution {p;}7; from the /;-leverage scores.

2: Randomly sample a small number of constraints according to {p;}™,
to construct a subproblem.

3: Solve the £1-regression problem on the subproblem.

A naive version of this meta-algorithm gives a 1 + € relative-error
approximation in roughly O(mn®/e?) time (DDHKM 2009). (Ugh.)

But, as with ¢ regression:
@ We can make this algorithm run much faster in RAM by
» approximating the ¢;-leverage scores quickly, or
» performing an “¢; projection” to uniformize them approximately.
@ We can make this algorithm work at higher precision in RAM at
large-scale by coupling with an iterative algorithm.

Mahoney (Stanford) Implementing Randomized Matrix Algorithms July 2012 24 / 39

Subspace-preserving sampling

(Dasgupta, et al. 2009)

Theorem (Dasgupta, Drineas, Harb, Kumar, and Mahoney 2009)

Given A€ R™" and € < 1, let s > 64n*/?k1(A)(nIn L2 +1n 2)/e2. Let
S € R™™ be a diagonal sampl/ng matrix” with random d/agona/s.
G 5 with probability pi,
" 10 otherwise

where

A .
pi > min{l, “|A|1”1 .s}, i=1,....m.

Then, with probability at least 1 — §, the following holds, for all x € R":

(1 =)l Ax]lx < [|SAx][1 < (1 + €)[| Ax[]1.

Mahoney (Stanford) Implementing Randomized Matrix Algorithms July 2012 25 /39

Computing subsampled solutions

(Dasgupta, et al. 2009)

Let X be an optimal solution to the subsampled problem:

minimize ||SAx|1

T

subject to c¢'x =1.

Then with probability at least 1 — 9, we have

14
1—¢

1 1
ARl € —/——[|SAR]1 < ——||SAX*||1 <
1811 < T 1|SA%l < T—[1SAx |1 <

€
[[AX"1.-

@ It is hard to follow the theory closely on the sample size.

@ We determine the sample size based on hardware capacity, not on e.

Mahoney (Stanford) Implementing Randomized Matrix Algorithms July 2012

26 / 39

f1-norm preconditioning via oblivious projections

Find an oblivious (i.e., independent of A) projection matrix
M e ROMlogmMxm gych that

[Ax[[y < [[NAx][1 < knl|Ax]lz, Vx.

Compute R = gr(MA).
Then,

1 _
oYl < [IAR Yyl < O 10g" 2 n)llyll2, Vy.

Therefore, AR is /1-well-conditioned: k1(AR™) = O(n'/2log? n- kp).

Constructions for [1 | time KN
Cauchy (sohler and Woodruf 2011) O(mn®logn) O(nlog n)
Fast CaUChy (Clarkson, Drineas, Magdon-Ismail, O(mn Iog n) O(nz |0g2 n)

Mahoney, Meng, and Woodruff 2012)

Mahoney (Stanford) Implementing Randomized Matrix Algorithms July 2012 27 / 39

Evaluation on large-scale ¢; regression problem (1 of 2).

LB = x* /Xl llx = x*ll2/lIx* M2 flx = x*[loo/ 1" [l
CT (Cauchy) | [0.008, 0.0115] [0.00895, 0.0146] [0.0113, 0.0211]
GT (Gaussian) | [0.0126, 0.0168] [0.0152, 0.0232] [0.0184, 0.0366]
NOCD [0.0823, 22.1] [0.126, 70.8] [0.193, 134]
UNIF [0.0572, 0.0951] [0.089, 0.166] [0.129, 0.254]

Table: The first and the third quartiles of relative errors in 1-, 2-, and oo-norms
on a data set of size 101 x 15. CT clearly performs the best. (FCT performs
similarly.) GT follows closely. NOCD generates large errors, while UNIF works but
it is about a magnitude worse than CT.

Mahoney (Stanford) Implementing Randomized Matrix Algorithms July 2012 28 / 39

Evaluation on large-scale ¢; regression problem (2 of 2).

o

10

T
—*— cauchy
—+— gaussian p--e
—*— nocd

» ’
—+— unif

index

Figure: The first (solid) and the third (dashed) quartiles of entry-wise absolute
errors on a data set of size 101° x 15. CT clearly performs the best. (FCT
performs similarly.) GT follows closely. NOCD and UNIF are much worse.

Mahoney (Stanford) Implementing Randomized Matrix Algorithms July 2012 29 / 39

f1-norm preconditioning via ellipsoidal rounding
Find an ellipsoid € = {x |xT E~1x < 1} such that
1
ZecC={x||AxL <1} C €.
1

Then we have
lyll2 < |AEY2y|ly < kallyll2, V-

time K1 passes
Léwner-John ellipsoid (exists) nl/?
Clarkson 2005 (Lovssz 1986) (’)(mn5 log m) n multiple
Meng and Mahoney 2012 | O(mn? log m) 2n multiple
O(mn? log) 2n? single
O(mnlog 77) O(n°?log/? n) single

Mahoney (Stanford) Implementing Randomized Matrix Algorithms July 2012 30/ 39

Fast ellipsoidal rounding

@ Partition A into sub-matrices Aj, Ay, ..., Ay of size O(n3log n) x n.
@ Compute A; € RO(MogmMxn — EJIT(A;), fori=1,..., M.
© Compute an ellipsoid &£, which gives a 2n-rounding of
€ ={x| iy |Aixll> < 1}
— By a proper scaling, £ gives an (’)(n5/2 Iogl/2 n)-rounding of C.

Can use this to get a “one-pass conditioning” algorithm!

Mahoney (Stanford) Implementing Randomized Matrix Algorithms July 2012 31/39

A MapReduce implementation

@ Inputs: A € R™" and k1 such that
Ix[l2 < [[Axl1 < rallx]l2, ¥,

c € R", sample size s, and number of subsampled solutions ny.
o Mapper:
@ For each row a; of A, let p; = min{s||a;1/(k1n*/?),1}.
@ For k=1,...,ny, emit (k,a;/p;) with probability p;.
@ Reducer:

@ Collect row vectors associated with key k and assemble Ag.
@ Compute X = arg min 7,1 ||Axx||1 using interior-point methods.
@ Return X.

Note that multiple subsampled solutions can be computed in a single pass.

Mahoney (Stanford) Implementing Randomized Matrix Algorithms July 2012 32 /39

lteratively solving

If we want to have a few more accurate digits from the subsampled
solutions, we may consider iterative methods.

passes extra work per pass
su bgradient (Clarkson 2005) O(n4/e2)
gradient (Nesterov 2009) O(m1/2/6)

e|||pSOId (Nemirovski and Yudin 1972)

inscribed ellipsoids
(Tarasov, Khachiyan, and Erlikh 1988)

O(n? log(k1/¢€))
O(nlog(k1/€))

O(n"/?log n)

Mahoney (Stanford) Implementing Randomized Matrix Algorithms

July 2012 33 /39

The Method of Inscribed Ellipsoids (MIE)

MIE works similarly to the bisection method, but in a higher dimension.

It starts with a search region Sp = {x | Sx < t} which contains a ball of
desired solutions described by a separation oracle. At step k, we first
compute the maximum-volume ellipsoid &£ inscribing Si. Let yi be the
center of &. Send y, to the oracle, if yi is not a desired solution, the
oracle returns a linear cut that refines the search region Sy — Sk+1.

Why do we choose MIE?
@ Least number of iterations
@ Initialization using all the subsampled solutions

@ Multiple queries per iteration

Mahoney (Stanford) Implementing Randomized Matrix Algorithms July 2012 34 /39

Constructing the initial search region

Given any feasible %, let f = ||A%[|; and & = ATsign(A%). we have
I = &ll2 < JAG® = R)[l1 < [|AX [l + [|A%])1 < 2F,
and, by convexity,
1A |1 > [[A%]l1 + & (x* — %),
AT

which implies g7 x* < g'%.

Hence, for each subsampled solution, we have a hemisphere that contains
the optimal solution.

We use all these hemispheres to construct the initial search region Sp.

Mahoney (Stanford) Implementing Randomized Matrix Algorithms July 2012 35 /39

Computing multiple f and g in a single pass

On MapReduce, the cost of input/output may dominate the cost of the

actual computation, which requires us to design algorithms that could do
more computations in a single pass.

o A single query:

f(x) =||Ax]l1, &(x)= ATsign(Ax).

@ Multiple queries:

F(X) =sum(|AX],0), G(X)= ATsign(AX).
An example on a 10-node Hadoop cluster:

e A:10® x 50, 118.7GB.

@ A single query: 282 seconds.

@ 100 queries in a single pass: 328 seconds.

Mahoney (Stanford) Implementing Randomized Matrix Algorithms

July 2012 36 / 39

MIE with sampling initialization and multiple queries

relative error
e
1S

mie
— mie w/ multi q
mie w/ sample init

mie w/ sample init and multi g

10

I I I
20 30 40 50 60 70 80
number of iterations

90

100

Figure: Comparing different MIEs on an /; regression problem of size 10° x 20.

Mahoney (Stanford)

Implementing Randomized Matrix Algorithms

July 2012

37 /39

MIE with sampling initialization and multiple queries

10

10" b

10° f

10" f

10" f

100 ¢

(@

10°F
10°F

107F

10°

andard IPCPM
roposed IPCPM

10 15 20 25
number of iterations

30

Figure: Comparing different MIEs on an ¢; regression problem of size 5.24€9 x 15.

Mahoney (Stanford)

Implementing Randomized Matrix Algorithms

July 2012

38 / 39

Conclusion

@ Implementations of randomized matrix algorithms for £, regression in
large-scale parallel and distributed environments.

> Includes Least Squares Approximation and Least Absolute Deviations
as special cases.

@ Scalability comes due to restricted communications.

» Randomized algorithms are inherently communication-avoiding.
» Look beyond FLOPS in large-scale parallel and distributed
environments.

@ Design algorithms that require more computation than traditional
algorithms, but that have better communication profiles.

» On MPI: Chebyshev semi-iterative method vs. LSQR.
» On MapReduce: Method of inscribed ellipsoids with multiple queries.

Mahoney (Stanford) Implementing Randomized Matrix Algorithms July 2012 39 /39

	Randomized matrix algorithms and large-scale environments
	Solving 2 regression using MPI
	Preconditioning
	Iteratively solving

	Solving 1 regression on MapReduce
	Problem formulation and preconditioning
	Computing a coarse solution
	Computing a fine solution

