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Model Y = ω ·X + ε, Y ∈ R, ω,X ∈ R
d, ε ∈ N (0, 1)

Data (Y1, X1), . . . , (YN , XN )

Least squares minω
∑N

i=1 |Yi − ω ·Xi|2
Penalized regression minω

∑N
i=1 |Yi − ω ·Xi|2 + π(ω)

LASSO Bayesian Info Criterion (BIC)
π(ω) = |ω|1 · β π(ω) = |ω|0 · logN

Parameter space is partitioned into regions (submodels).
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• Given region Ω of parameters and a prior ϕ(ω)dω on Ω,
the marginal likelihood of the data is proportional to

ZN =

∫

Ω
e−Nf(ω) ϕ(ω)dω

where f(ω) = 1
2N

∑N
i=1 |Yi − ω ·Xi|2.

• Laplace approximation: Asymptotically as sample size N → ∞,

− logZN ≈ Nf(ω∗) +
d

2
logN +O(1)

where ω∗ = argminω∈Ω f(ω) and d = dimΩ.

• Studying model asymptotics allows us to derive the BIC.
But Laplace approx only works when the model is regular.
Many models in machine learning are singular ,
e.g. mixtures, neural networks, hidden variables.
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Generally, there are three ways to estimate statistical integrals.

1. Exact methods
Compute a closed form formula for the integral,
e.g. (Lin·Sturmfels·Xu, 2009).

2. Numerical methods
Approximate using Markov Chain Monte Carlo (MCMC)
and other sampling techniques.

3. Asymptotic methods
Analyze how the integral behaves for large samples.
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Asymptotic theory (Arnol’d·Guseı̆n-Zade·Varchenko, 1985)
states that for a Laplace integral,

Z(N) =

∫

Ω
e−Nf(ω)ϕ(ω)dω ≈ e−Nf∗ · CN−λ(logN)θ−1

asymptotically as N → ∞ for some positive constants C, λ, θ
and where f∗ = minω∈Ω f(ω).

The pair (λ, θ) is the real log canonical threshold of f(ω)
with respect to the measure ϕ(ω)dω.
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Z(N) =

∫

Ω
e−Nf(ω)ϕ(ω)dω ≈ e−Nf∗ · CN−λ(logN)θ−1

Integral asymptotics depend on minimum locus of exponent f(ω).

f(x, y) = x2 + y2

f(x, y) = (xy)2

f(x, y) = (y2 − x3)2

Plots of integrand e−Nf(x,y) for N = 1 and N = 10
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Let Ω ⊂ R
d and f : Ω → R real analytic function.

• We say ρ : U → Ω desingularizes f if

1. U is a d-dimensional real analytic manifold covered
by coordinate patches U1, . . . , Us (≃ subsets of Rd).

2. ρ is a proper real analytic map that is an isomorphism
onto the subset {ω ∈ Ω : f(ω) 6= 0}.

3. For each restriction ρ : Ui → Ω,

f ◦ ρ(µ) = a(µ)µκ, det ∂ρ(µ) = b(µ)µτ

where a(µ) and b(µ) are nonzero on Ui.

• Hironaka (1964) proved that desingularizations always exist.
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• We know how to find RLCTs of monomial functions (AGV, 1985).
∫

Ω
e−Nω

κ1
1

···ω
κd
d ωτ1

1 · · ·ωτd
d dω ≈ CN−λ(logN)θ−1

where λ = mini
τi+1
κi

, θ = |{i : τi+1
κi

= λ}|.
• To compute the RLCT of any function f(ω):

1. Find minimum f∗ of f over Ω.
2. Find a desingularization ρ for f − f∗.
3. Use AGV Theorem to find (λi, θi) on each patch Ui.
4. λ = min{λi}, θ = max{θi : λi = λ}.

• The difficult part is finding a desingularization,
e.g (Bravo·Encinas·Villamayor, 2005).
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Sumio Watanabe Heisuke Hironaka

In 1998, Sumio Watanabe discovered how to study the asymptotic
behavior of singular models. His insight was to use a deep result in
algebraic geometry known as Hironaka’s Resolution of Singularities.

Heisuke Hironaka proved this celebrated result in 1964.
His accomplishment won him the Field’s Medal in 1970.
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X random variable with state space X (e.g. {1, 2, . . . , k}, Rk)
∆ space of probability distributions on X

M ⊂ ∆ statistical model, image of p : Ω → ∆
Ω parameter space
p(x|ω)dx distribution at ω ∈ Ω
ϕ(ω)dω prior distribution on Ω

Suppose samples X1, . . . , XN drawn from true distribution q ∈ M.

Marginal likelihood ZN =

∫

Ω

N
∏

i=1

p(Xi|ω)ϕ(ω)dω.

Kullback-Leibler function K(ω) =

∫

X

q(x) log
q(x)

p(x|ω)dx.
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Define log likelihood ratio. Note that its expectation is K(ω).

KN (ω) =
1

N

∑N
i=1 log

q(Xi)

p(Xi|ω)
.

Standard Form of Log Likelihood Ratio (Watanabe)

If ρ : U → Ω desingularizes K(ω), then on each patch Ui,

KN ◦ ρ(µ) = µ2κ − 1√
N

µκξN (µ)

where ξN (µ) converges in law to a Gaussian process on U .

For regular models, this is a Central Limit Theorem.
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Define empirical entropy SN = − 1
N

∑N
i=1 log q(Xi).

Convergence of stochastic complexity (Watanabe)

The stochastic complexity has the asymptotic expansion

− logZN = NSN + λq logN − (θq − 1) log logN +Op(1)

where λq, θq describe the asymptotics of the deterministic integral

Z(N) =

∫

Ω
e−NK(ω)ϕ(ω)dω ≈ CN−λq(logN)θq−1.

For regular models, this is the Bayesian Information Criterion.
Various names for (λq, θq):

statistics - learning coefficient of the model M at q
algebraic geometry - real log canonical threshold of K(ω)
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Bayes generalization error BN . The Kullback-Leibler distance
from the true distribution q(x) to the predictive distribution p(x|D).

Asymptotically , BN is equivalent to

• Akaike Information Criterion for regular models

AIC = −∑N
i=1 log p(Xi|ω∗) + d

• Akaike Information Criterion for singular models

AIC = −∑N
i=1 log p(Xi|ω∗) + 2(singular fluctuation)

Numerically , BN can be estimated using MCMC methods.

• Deviance Information Criterion for regular models

DIC = EX [log p(X|Eω[ω])]− 2Eω[EX [log p(X|ω)]]
• Widely Applicable Information Criterion for singular models

WAIC = EX [logEω[p(X|ω)]]− 2Eω[EX [log p(X|ω)]]
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Local RLCTs. Given x ∈ Ω, there exist a small nbhd Ωx ⊂ Ω of x
and exponents (λx, θx) such that for all nbhds U ⊂ Ωx of x,

∫

U
e−Nf(ω) ϕ(ω)dω ≈ CN−λx(logN)θx−1.

Maximum likelihood estimation. Find minω∈Ω ℓN (ω) where

ℓN (ω) = −
N
∑

i=1

log p(Xi|ω).

Sparsity penalty for MLE . Find minω∈Ω ℓN (ω) + π(ω) where

π(ω) = λω logN − (θω − 1) log logN.

This is a generalization of the BIC to singular models. It can also
teach us how to penalize parameters appropriately in LASSO.
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e.g. Let f(x, y) = x4 + x2y + xy3 + y4 and τ = (1, 1).

Newton polyhedron τ -distance

The τ -distance is lτ = 8/5 and the multiplicity is θτ = 1.
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e.g. Let f(x, y) = x4 + x2y + xy3 + y4 and τ = (2, 1).

Newton polyhedron τ -distance

The τ -distance is lτ = 1 and the multiplicity is θτ = 2.
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Given a power series f(ω) ⊂ R[ω1, . . . , ωd],

1. Plot α ∈ R
d for each monomial ωα appearing in f(ω).

2. Take the convex hull P(I) of all plotted points.

This convex hull P(f) is the Newton polyhedron of f .

Given a vector τ ∈ Z
d
≥0, define

1. τ -distance lτ = min{t : tτ ∈ P(I)}.
2. multiplicity θτ = codim of face of P(I) at this intersection.

Upper bound and equality for RLCTs at the origin

If lτ is the τ -distance of P(f) and θτ is its multiplicity, then
the RLCT (λ0, θ0) of f with respect to ωτ−1dω satisfies

(λ0, θ0) ≤ (1/lτ , θτ ).

Equality occurs when f is a sum of squares of monomials.
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Thank you!

“Algebraic Methods for Evaluating Integrals in Bayesian Statistics”

http://math.berkeley.edu/~shaowei/swthesis.pdf

(PhD dissertation, May 2011)

http://math.berkeley.edu/~shaowei/swthesis.pdf
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Using fiber ideals and toric blowups, we were able to compute
higher order asymptotics of the statistical integral

Z(N) =

∫

[0,1]2
(1− x2y2)N/2 dxdy ≈

√

π

8
N−

1

2 logN −
√

π

8

(

1

log 2
− 2 log 2− γ

)

N−
1

2

−1

4
N−1 logN +

1

4

(

1

log 2
+ 1− γ

)

N−1

−
√
2π

128
N−

3

2 logN +

√
2π

128

(

1

log 2
− 2 log 2− 10

3
− γ

)

N−
3

2

− 1

24
N−2 + · · ·

Euler-Mascheroni
constant

γ = lim
n→∞

(

n
∑

k=1

1

k
− log n

)

≈ 0.5772156649.
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ZN =

∫

Ω

∏

i,j

pij(ω)
Uij ϕ(ω)dω

Using Watanabe’s Singular Learning Theory ,

− logZN ≈ −
∑

i,j

Uij log qij + λq logN − (θq − 1) log logN

where the learning coefficient (λq, θq) is given by

(λq, θq) =















(5/2, 1) if rank q = 1,
(7/2, 1) if rank q = 2, q /∈ [ 0

×

×

×
] ∪ [ 0

×

×

0 ],
(4, 1) if rank q = 2, q ∈ [ 0

×

×

×
] \ [ 0

×

×

0 ],
(9/2, 1) if rank q = 2, q ∈ [ 0

×

×

0 ].

Here, q ∈ [ 0

×

×

×
] if for some i, j, qii = 0 and qij qji qjj 6= 0,

q ∈ [ 0

×

×

0 ] if for some i, j, qii = qjj = 0 and qij qji 6= 0.
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