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The problem:  
Solving very large Laplacian systems 

 

 
A*x = b   

dimension n, m non-zero entries 

}  Laplacian:  
}  symmetric, negative off-diagonal elements, zero row-sums  



 

 
 

 A        *  x = b   

}  Will keep algebra to a minimum 

The problem:  
Solving very large Laplacian systems 



Why solve Laplacians? 
It would take a whole book to cover their applications 
 
}  Traditionally useful in scientific computing 

}  Solving problems on nice meshes 

}  Numerous novel applications in networks 
}  Link prediction 
}  Recommendation systems 
}  Protein interaction networks 

}  Several applications in computer vision 
}  Image denoising 
}  Image impainting 
}  Image segmentation [KMT09] 

 



What is the reason … 
Laplacians are so common in applications  
 

}  It’s the algebra behind Ohm’s and Kirchoff ’s laws                      
that govern electrical flows in resistive networks 

}  They also describe random walks in graphs 
}  Their eigenvectors capture information about graph cuts 

}  … so they appear spontaneously 

 

? 



What is the reason … 
Laplacians are so common in applications  
 

}  … but also because we’ve become suspicious                   
about their power 

}  In 2004, Spielman and Teng showed that Laplacians can be 
solved in nearly-linear time O(mlog50 n) 

}  Laplacian-based solutions have accelerated since then 

 

? 



The Laplacian paradigm 

}  With recent improvements Laplacian solvers are increasingly 
viewed as a powerful algorithmic primitive 

}  A great example: The new fastest known algorithm for the 
long-studied max-flow/min-cut problem is solver-based 

“Spielman and Teng have ignited what appears to be an 
 incipient revolution in the theory of graph algorithms” 

--Goemans, Kelner 
 

}  Shang-Hua Teng: “The Laplacian paradigm” 
}  Erica Klarreich:  “Network Solutions”         (simonsfoundation.org) 

 



The goal of the talk:  
 
}  State-of-the-art in theory : 
}  A provably O(mlog n) algorithm [Koutis, Miller, Peng 10-11] 

}  State-of-the-art in practice : 
}  An empirically linear time implementation [Koutis, Miller 08] 
}  ….. with very rare exceptions 

}  Bridging the gap 
}  Ideas for “sketching” large graphs 

 



Instance sparsification 
a basic idea in algorithm design 
 

}  Solve a sparser but similar instance of the problem 
}  Similar here depends on the application 

}  Some examples (actually related to our problem too) 

 
 



Instance sparsification 
a basic idea in algorithm design 
 
}  Distance-based sparsification 
}  Each graph A contains a sparse subgraph B (spanner) so that 

for every pair of vertices (u,v): 

}  Cut-based sparsification 
}  For each graph A there is a sparse graph B                                           

where all bipartitions are nearly the same as in A 
}  Community detection lumps up parts of the graph 

 
 



Spectral sparsification 
sparsification in the context of linear systems 
 
}  It is called spectral because graphs A and B have about the 

same eigenvalues and eigenspaces  

}  Spectral sparsification in some subsumes                                 
distance-based and cut-based sparsification 

}  In numerical analysis B is known as the preconditioner 
}  Preconditioning is a very well studied topic                                  

mostly as an algebraic problem 

}   Pravin Vaidya saw preconditioning as a graph problem 

 
 



Spectral sparsification 
sparsification in the context of linear systems 
 
}  Algebra guides us to: 

}  Find the appropriate measure of similarity 
}  Distill sufficient conditions that lead to a fast solver 

}  Graph B is an incremental sparsifier with two properties 

1.    

2.       

 
 

Quality of approximation 



Recursive sparsification:  
a construction of a chain of preconditioners 

Find a tree: 
Multiply weights on 

tree by log2n 

Incremental sparsifier 

 via sampling 
Make tree a little heavier 

…until left with 
a heavier tree 

Recursion 

Which tree? 

What 
probabilities? 

So what?            
System is still big 



Which tree ? 
}  There is a low-stretch spanning tree that preserves edge 

weights within an O(log n) factor on average 

What probabilities ? 
}  The probability that an edge is sampled is proportional to its 

stretch over the low-stretch tree. The higher the stretch the 
more probable is that the edge will be kept in the sparsifier. 

}  Somehow, preserving distances + randomization                      
amounts to spectral sparsification! 

 

The theory:  
a construction of a chain of preconditioners 



Low-stretch tree 
an illustration on the grid 

}  Most edges have low stretch 

}  There are edges with high stretch 
}  Their number is small     
}  So they don’t affect average 

}  These edges tend to stay in the 
chain until the near-end when tree 
has become heavy enough    to 
absorb them 



}  Including Slashdot, CACM, Techreview (MIT)…. 

}  As a result we’re getting several inquiries 
}  “Do you have an implementation?” 

The publicity J 



}  “Not yet, but we do have a very fast solver” 

The practice:  
our response to the inquiries 



}  In practice constants matter 
}  CMG has hard-to-beat constants and 

we understand why 

}  The chain makes information travel fast 
in the graph (rapid mixing) 

}  Rapid mixing is inherent in                         
well connected graphs                               

The practice:  
The Combinatorial Multigrid Solver (CMG) 



}  If it is possible to identify the well-connected and isolated 
components, we can actually construct a good preconditioner 

The practice:  
The Combinatorial Multigrid Solver (CMG) 



}  Every graph can be decomposed in good communities 

}  So, CMG is a cut-based graph sparsification algorithm 
}  Satisfactory decompositions in sparse graphs                                          

can be found quickly [Koutis, Miller 08] 
}  These give better spectral approximations for the same amount of 

size reduction, in all graphs with non-trivial connectivity  

The practice:  
The Combinatorial Multigrid Solver (CMG) 



}  Satisfactory decompositions can be found  in sparse graphs 
}  We do not have a practical and theoretically sound way                     

of doing the same in dense graphs 

}  CMG constructs (recursively) a chain of graphs 
}  These can get dense so CMG may stagnate in recursion 

}  This is rare:  
}  Out of 3374 real-world graphs this appears in 26 cases  [Livne, Brandt 12] 

The practice:  
The difficulties in CMG 



Eventually Laplacian solvers will be a combination of                  
cut-based and distance-based spectral sparsification 

 

Bridging theory and practice:  



}  Spielman & Srivastava:  
}  Every graph has an excellent (fully) sparse spectral approximation  
}  It can be computed via sampling with probabilities proportional to 

effective resistances of the edges.  

}  An significant generalization was given in [Drineas, Mahoney 11] 

}  Why incremental sparsification works:  
}  Stretch is loose approximation to effective resistance 
}  We can compensate for “looseness” by extra sampling 
}  So instead of a fully sparse graph we get an incremental sparse one 

Bridging theory and practice:  
full vs incremental spectral sparsification 



}  Idea: Whenever CMG yields a dense graph, sparsify it fully 
}  However we need to solve systems in order to compute them           

(sort of a chicken and egg problem) 

Bridging theory and practice:  
full spectral sparsification 



}  Can we solve the chicken and the egg problem? 

1.  Use solvers but on special graphs on which they run faster 
2.  Compute the effective resistance over these special graphs  
3.  These will be somewhat crude approximations to the actual 

effective resistances (say by an O(log2 n) factor)  
4.  Do oversampling and produce a slightly more dense graph (O

(nlog3 n) edges) 
5.  Fully sparsify the last graph 

Bridging theory and practice:  
faster spectral sparsification [Koutis,Levin,Peng 12] 



}  Can we solve the chicken and the egg problem? 

}  Cheap solver-based solutions give: 
}  An O(mlog n) time algorithm for graphs with nlog3 n edges 
}  An O(m) time solver for graphs with nlog5 n edges 

}  This solution suggests the use of a distance-based solver                              
as a subroutine to a cut-based solver (perhaps not so elegant) 

Bridging theory and practice:  
faster spectral sparsification [Koutis,Levin,Peng 12] 



}  Can we really solve the chicken and the egg problem? 

}  Is there a combinatorial algorithm for spectral sparsification? 
}  It must work in time less than O(mlog n) 

}  The short answer is yes 
}  It is an iterative application of incremental sparsification 

Bridging theory and practice:  
full spectral sparsification 



Theorem:  Every graph can be spectrally approximated                          
by a sum of O(log3 n) trees.  

Graph sketching by trees 



Graph sketching by trees 

2 

Remove 
from graph 

Remove 
from graph Keep the trees and apply 

incremental sparsification 
to the rest of the graph. 

log2 n 
trees 

…. 

Apply recursion…. 
log n levels each log2 n trees 

log2 n 
trees 

1 log2 n 



}  “A new breed of ultrafast computer algorithms offers computer scientists a 
novel tool to probe the structure of large networks.”                           – 
from “Network Solutions” 

}  We’ve discovered practical algorithms 
}  There is still room for improvement 

}  The combination of graph-theoretical algorithms and randomized 
linear algebra can produce extremely powerful algorithms 

}  The hope is that some of the methods                                             
will extend to more general linear systems  

Conclusion 



Thanks! 


