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Outline
• What is “communication” and why is it important to avoid?
• “Direct” Linear Algebra

• Lower bounds on how much data must be moved to 
solve linear algebra problems like Ax=b, Ax = λx, etc

• Algorithms that attain these lower bounds
• Not in standard libraries like Sca/LAPACK (yet!)
• Large speed-ups possible

• “Iterative” Linear Algebra (Krylov Subspace Methods) 
• Ditto

• Extensions, open problems
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Motivation (1/2)

Algorithms have two costs:
1.Arithmetic (FLOPS)
2.Communication: moving data between 

• levels of a memory hierarchy (sequential case) 
• processors over a network (parallel case). 
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Motivation (2/2)
• Running time of an algorithm is sum of 3 terms:

• # flops * time_per_flop
• # words moved / bandwidth
• # messages * latency
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communication

• Time_per_flop <<  1/ bandwidth  <<  latency
• Gaps growing exponentially with time

• Goal : reorganize linear algebra to avoid communication
• Between all memory hierarchy levels 

• L1         L2         DRAM          network,  etc 
• Not just hiding communication (speedup  2x ) 
• Arbitrary speedups possible

Annual improvements
Time_per_flop Bandwidth Latency

Network 26% 15%
DRAM 23% 5%

59%



Direct linear algebra:    Prior Work on Matmul
• Assume  n3 algorithm  (i.e. not Strassen-like)
• Sequential case, with fast memory of size M

• Lower bound on  #words moved to/from slow memory  = 
 (n3 / M1/2 )    [Hong, Kung, 81] 

• Attained using “blocked” algorithms
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• Parallel case on P processors:
• Let NNZ be total memory needed; assume load balanced
• Lower bound on #words communicated                            

=  (n3 /(P· NNZ )1/2 )        [Irony, Tiskin, Toledo, 04]

NNZ Lower bound
on #words

Attained by

3n2           (“2D alg”)  (n2 / P1/2 ) [Cannon, 69]
3n2 P1/3  (“3D alg”)  (n2 / P2/3 ) [Johnson,93]



Lower bound for all “direct” linear algebra

• Holds for
• BLAS, LU, QR, eig, SVD, tensor contractions, …
• Some whole programs (sequences of  these operations, no 

matter how individual ops are interleaved, eg computing Ak)
• Dense and sparse matrices (where #flops  <<  n3 )
• Sequential and parallel algorithms
• Some graph-theoretic algorithms (eg Floyd-Warshall)
• See [BDHS09] 7

Let M = “fast” memory size per processor

#words_moved by at least one processor = 
(#flops / M1/2 )

#messages_sent by at least one processor = 
(#flops / M3/2 )



Can we attain these lower bounds?
• Do conventional dense algorithms as implemented in    

LAPACK and ScaLAPACK attain these bounds?
• Mostly not 

• If not, are there other algorithms that do?
• Yes

• Goals for algorithms:
• Minimize #words_moved =  (#flops/ M1/2 )
• Minimize #messages =  (#flops/ M3/2 )

• Need new data structures: (recursive) blocked
• Minimize for multiple memory hierarchy levels

• Cache-oblivious algorithms would be simplest
• Fewest flops when matrix fits in fastest memory

• Cache-oblivious algorithms don’t  always attain  this

• Only a few sparse algorithms so far (eg Cholesky) 8



Summary of dense sequential algorithms 
attaining communication lower bounds

• Algorithms shown minimizing # Messages use (recursive) block layout
• Not possible with columnwise or rowwise layouts

• Many references (see reports), only some shown, plus ours
• Cache-oblivious are underlined, Green are ours, ? is unknown/future work

Algorithm 2 Levels of Memory Multiple Levels of Memory

#Words Moved and # Messages #Words Moved and #Messages

BLAS-3 Usual blocked or recursive algorithms Usual blocked algorithms (nested),   
or recursive [Gustavson,97]

Cholesky LAPACK (with b = M1/2) 
[Gustavson 97]

[BDHS09]

[Gustavson,97] 
[Ahmed,Pingali,00]

[BDHS09]

(←same) (←same)

LU with
pivoting

LAPACK (rarely)
[Toledo,97] , [GDX 08]

[GDX 08]
not partial pivoting

[Toledo, 97]
[GDX 08]?

[GDX 08]?

QR
Rank-
revealing

LAPACK (rarely) 
[Elmroth,Gustavson,98]

[DGHL08]

[Frens,Wise,03]
but 3x flops
[DGHL08]

[Elmroth,
Gustavson,98]

[DGHL08] ?

[Frens,Wise,03]
[DGHL08] ?

Eig, SVD Not LAPACK
[BDD10]  randomized, but more flops

[BDD10] [BDD10]



Summary of dense 2D parallel algorithms 
attaining communication lower bounds

• Assume nxn matrices on P processors,  memory per processor = O(n2 / P)
• ScaLAPACK assumes best block size b chosen
• Many references (see reports),  Green are ours
• Recall lower bounds:

#words_moved  =  ( n2 /  P1/2 )         and         #messages = ( P1/2 )

Algorithm Reference Factor exceeding 
lower bound for 
#words_moved

Factor exceeding 
lower bound for
#messages

Matrix multiply [Cannon, 69] 1 1
Cholesky ScaLAPACK log P log P
LU [GDX08]

ScaLAPACK
log P
log P

log P
( N / P1/2 ) · log P 

QR [DGHL08] 
ScaLAPACK

log P
log P

log3 P
( N / P1/2 ) · log P 

Sym Eig, SVD [BDD10]
ScaLAPACK

log P
log P

log3 P
N / P1/2

Nonsym Eig [BDD10]
ScaLAPACK

log P
P1/2 · log P 

log3 P
N · log P



QR of a Tall, Skinny matrix is bottleneck;
Use TSQR instead:
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Minimizing Communication in TSQR

W = 

W0
W1
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Parallel:
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Dual Core:

Can Choose reduction tree dynamically

Multicore / Multisocket / Multirack / Multisite / Out-of-core:  ?



TSQR Performance Results
• Parallel

– Intel Clovertown
– Up to 8x speedup (8 core, dual socket, 10M x 10)

– Pentium III cluster, Dolphin Interconnect, MPICH
• Up to 6.7x speedup (16 procs, 100K x 200)

– BlueGene/L
• Up to 4x speedup (32 procs, 1M x 50)

• Tesla – early results
• Up to 2.5x speedup (vs LAPACK on Nehalem)
• Better: 10x on Fermi with standard algorithm and better SGEMV

• Grid – 4x on 4 cities (Dongarra et al)
• Cloud – early result – up and running using Nexus

• Sequential  
– Out-of-Core on PowerPC laptop

• As little as 2x slowdown vs (predicted) infinite DRAM
• LAPACK with virtual memory never finished
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QR Factorization Intel 16 cores
Tall Skinny Matrices

14#cols = 51200 x #rows
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Modeled Speedups of CAQR vs ScaLAPACK
(on n x n matrices; uses TSQR for panel factorization)

Petascale 
up to 22.9x

IBM Power 5
up to 9.7x

“Grid”
up to 11x

Petascale machine with 8192 procs, each at 500 GFlops/s, a bandwidth of 4 GB/s.
./102,10,102 9512 wordsss   



Rank Revealing CAQR Decompositions 

Randomized URV
• [V,R’] = caqr(randn(n,n))

[U,R] = caqr(A·VT)
• A = URV reveals the rank of A with 

high probability
• Applies to A1

1· A2
1· A3

1 · · ·
• Used for eigensolver/SVD

QR with column pivoting
• “Tournament Pivoting” to 

pick b best columns of 2 
groups of b each

• Only works on single matrix
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• Both cases:        #words_moves = O(mn2/sqrt(M)),
or                 #passes_over_data = O(n/sqrt(M))

• Other CA decompositions with pivoting:
• LU  (tournament, not partial pivoting, but stable!)
• Cholesky with diagonal pivoting
• LU with complete pivoting
• LDLT ?



Back to LU: Using similar idea for TSLU as TSQR:
Use reduction tree, to do “Tournament Pivoting”

Wnxb =

W1
W2
W3
W4

P1·L1·U1
P2·L2·U2
P3·L3·U3
P4·L4·U4

=

Choose b pivot rows of W1, call them W1’
Choose b pivot rows of W2, call them W2’
Choose b pivot rows of W3, call them W3’
Choose b pivot rows of W4, call them W4’

W1’
W2’
W3’
W4’

P12·L12·U12

P34·L34·U34

=
Choose b pivot rows, call them W12’

Choose b pivot rows, call them W34’

W12’
W34’

=     P1234·L1234·U1234 Choose b pivot rows

Go back to W and use these b pivot rows 
(move them to top, do LU without pivoting)
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Making TSLU Numerically Stable

• Details matter
• Going up the tree, we could do LU either on original 

rows of A (tournament pivoting), or computed rows of U
• Only tournament pivoting stable

• Thm: New scheme as stable as Partial Pivoting (GEPP) in 
following sense:  Get same Schur complements as GEPP 
applied to different input matrix whose entries are blocks 
taken from input A
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What about algorithms like Strassen?
• Results for sequential case only
• Restatement of result so far for O( n3 ) matmul: 

#words_moved = ( n3 / M3/2 – 1 )
• Lower bound for Strassen’s method:

#words_moved = ( n / M/2 – 1 ) where  = log27
• Proof very different than before!
• Attained by usual recursive (cache-oblivious) implementation
• Also attained by new algorithms for LU, QR, eig, SVD that 

use Strassen 
• But not clear how to extend lower bound

• Also attained by fast matmul, LU, QR, eig, SVD for any 
• Can be made numerically stable
• True for any matrix multiplication algorithm that will ever be invented
• Conjecture: same lower bound as above

• What about parallelism? 19



Direct Linear Algebra: summary and future work
• Communication lower bounds on #words_moved and #messages

• BLAS, LU, Cholesky, QR, eig, SVD, tensor contractions, …
• Some whole programs (compositions of  these operations,                       

no matter how individual ops are interleaved, eg computing Ak)
• Dense and sparse matrices (where #flops  <<  n3 )
• Sequential and parallel algorithms
• Some graph-theoretic algorithms (eg Floyd-Warshall)

• Algorithms that attain these lower bounds
• Nearly all dense problems (some open problems, eg LDL’)
• A few sparse problems

• Speed ups in theory and practice
• Extensions to Strassen-like algorithms
• Future work

• Lots to implement, autotune
• Next generation of Sca/LAPACK on heterogeneous architectures (MAGMA)

• Few algorithms in sparse case (just Cholesky)
• 3D Algorithms (only for Matmul so far), may be important for scaling 20



Avoiding Communication in Iterative Linear Algebra
• k-steps of typical iterative solver for sparse Ax=b or Ax=λx

• Does k SpMVs with starting vector
• Finds “best” solution among all linear combinations of these k+1 vectors
• Many such “Krylov Subspace Methods”

• Conjugate Gradients, GMRES, Lanczos, Arnoldi, … 
• Goal: minimize communication in Krylov Subspace Methods

• Assume matrix “well-partitioned,” with modest surface-to-volume ratio
• Parallel implementation

• Conventional: O(k log p) messages, because k calls to SpMV
• New: O(log p) messages - optimal

• Serial implementation
• Conventional: O(k) moves of data from slow to fast memory
• New: O(1) moves of data – optimal

• Lots of speed up possible (modeled and measured)
• Price: some redundant computation

• Much prior work: See PhD Thesis by Mark Hoemmen
• See bebop.cs.berkeley.edu
• CG: [van Rosendale, 83], [Chronopoulos and Gear, 89]
• GMRES: [Walker, 88], [Joubert and Carey, 92], [Bai et al., 94]
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Locally Dependent Entries for 
[x,Ax], A tridiagonal, 2 processors

Can be computed without communication

Proc 1                                           Proc 2



x

Ax

A2x

A3x

A4x

A5x

A6x

A7x

A8x

Can be computed without communication

Proc 1                                           Proc 2

Locally Dependent Entries for 
[x,Ax,A2x], A tridiagonal, 2 processors
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Ax

A2x

A3x

A4x

A5x
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A8x

Can be computed without communication

Proc 1                                           Proc 2

Locally Dependent Entries for 
[x,Ax,…,A3x], A tridiagonal, 2 processors
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Can be computed without communication

Proc 1                                           Proc 2

Locally Dependent Entries for 
[x,Ax,…,A4x], A tridiagonal, 2 processors



x

Ax

A2x

A3x

A4x

A5x

A6x

A7x

A8x

Locally Dependent Entries for 
[x,Ax,…,A8x], A tridiagonal, 2 processors

Can be computed without communication
k=8 fold reuse of A

Proc 1                                           Proc 2



Remotely Dependent Entries for 
[x,Ax,…,A8x], A tridiagonal, 2 processors

One message to get data needed to compute remotely dependent entries, not k=8
Minimizes number of messages = latency cost

Price: redundant work  “surface/volume ratio”

Proc 1                                           Proc 2

x

Ax

A2x

A3x

A4x

A5x

A6x

A7x

A8x



Remotely Dependent Entries for [x,Ax,A2x,A3x], 
A irregular, multiple processors



Sequential [x,Ax,…,A4x], with memory hierarchy

v

One read of matrix from slow memory, not k=4
Minimizes words moved = bandwidth cost

No redundant work



Minimizing Communication of GMRES to solve Ax=b
• GMRES: find x in span{b,Ab,…,Akb} minimizing || Ax-b ||2
• Cost of k steps of standard GMRES vs new GMRES

Standard GMRES
for i=1 to k

w = A · v(i-1)
MGS(w, v(0),…,v(i-1))
update v(i), H

endfor
solve LSQ problem with H

Sequential: #words_moved =
O(k·nnz) from SpMV

+ O(k2·n) from MGS
Parallel:  #messages = 

O(k) from SpMV
+ O(k2 · log p) from MGS

Communication-avoiding GMRES
W = [ v, Av, A2v, … , Akv ]
[Q,R] = TSQR(W)  …  “Tall Skinny QR”
Build H from R, solve LSQ problem

Sequential: #words_moved =
O(nnz) from SpMV

+ O(k·n)  from TSQR
Parallel: #messages = 

O(1) from computing W
+ O(log p) from TSQR

•Oops – W from power method, precision lost!
30
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How to make CA-GMRES Stable?
• Use a different polynomial basis for the Krylov subspace
• Not Monomial basis W = [v, Av, A2v, …], instead [v, p1(A)v,p2(A)v,…]
• Possible choices:

• Newton Basis WN = [v, (A – θ1 I)v , (A – θ2 I)(A – θ1 I)v, …]    
• Shifts θi chosen as approximate eigenvalues from Arnoldi 
• Using same Krylov subspace, so “free”

• Chebyshev Basis WC = [v, T1(A)v, T2(A)v,  …]
• Ti(z) chosen to be small in region of complex plane containing         

large eigenvalues 
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“Monomial” basis [Ax,…,Akx]  
fails to converge

Newton polynomial basis does converge
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Speed ups of GMRES on 8-core Intel Clovertown
Requires co-tuning kernels

[MHDY09]
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• Lots of algorithms to implement, autotune
• Make widely available via OSKI, Trilinos, PETSc, Python, …
• Job available…

• Extensions to other Krylov subspace methods
• So far just Lanczos/CG, Arnoldi/GMRES, BiCG
• Need BiCGStab, CGS, QMR, …

• Add preconditioning to solve MAx = Mb
• New kernel [x, Ax, MAx, AMAx, MAMAx, AMAMAx, …]
• Diagonal M easy
• Block diagonal M harder 

• (AM)k quickly becomes dense but with low-rank off-diagonal blocks
• Extends to hierarchical, semiseparable M

• Theory exists, no implementations yet

Communication Avoiding Iterative Linear Algebra: 
Future Work
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For more information
• See papers at bebop.cs.berkeley.edu
• See slides for week-long short course 

• Gene Golub SIAM Summer School in Numerical Linear Algebra
• www.ba.cnr.it/ISSNLA2010/index.htm
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Summary

Don’t Communic…
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Time to redesign all dense and sparse linear algebra 


