
1

Minimizing Communication
in Linear Algebra

James Demmel
15 June 2010

www.cs.berkeley.edu/~demmel

2

Outline
• What is “communication” and why is it important to avoid?
• “Direct” Linear Algebra

• Lower bounds on how much data must be moved to
solve linear algebra problems like Ax=b, Ax = λx, etc

• Algorithms that attain these lower bounds
• Not in standard libraries like Sca/LAPACK (yet!)
• Large speed-ups possible

• “Iterative” Linear Algebra (Krylov Subspace Methods)
• Ditto

• Extensions, open problems

Collaborators

• Grey Ballard, UCB EECS
• Jack Dongarra, UTK
• Ioana Dumitriu, U. Washington
• Laura Grigori, INRIA
• Ming Gu, UCB Math
• Mark Hoemmen, Sandia NL
• Olga Holtz, UCB Math & TU Berlin
• Julien Langou, U. Colorado Denver
• Marghoob Mohiyuddin, UCB EECS
• Oded Schwartz , TU Berlin
• Hua Xiang, INRIA
• Kathy Yelick, UCB EECS & NERSC
• BeBOP group at Berkeley

3

Thanks to Intel, Microsoft,
UC Discovery, NSF, DOE, …

4

Motivation (1/2)

Algorithms have two costs:
1.Arithmetic (FLOPS)
2.Communication: moving data between

• levels of a memory hierarchy (sequential case)
• processors over a network (parallel case).

CPU
Cache

DRAM

CPU
DRAM

CPU
DRAM

CPU
DRAM

CPU
DRAM

Motivation (2/2)
• Running time of an algorithm is sum of 3 terms:

• # flops * time_per_flop
• # words moved / bandwidth
• # messages * latency

5

communication

• Time_per_flop << 1/ bandwidth << latency
• Gaps growing exponentially with time

• Goal : reorganize linear algebra to avoid communication
• Between all memory hierarchy levels

• L1 L2 DRAM network, etc
• Not just hiding communication (speedup  2x)
• Arbitrary speedups possible

Annual improvements
Time_per_flop Bandwidth Latency

Network 26% 15%
DRAM 23% 5%

59%

Direct linear algebra: Prior Work on Matmul
• Assume n3 algorithm (i.e. not Strassen-like)
• Sequential case, with fast memory of size M

• Lower bound on #words moved to/from slow memory =
 (n3 / M1/2) [Hong, Kung, 81]

• Attained using “blocked” algorithms

6

• Parallel case on P processors:
• Let NNZ be total memory needed; assume load balanced
• Lower bound on #words communicated

=  (n3 /(P· NNZ)1/2) [Irony, Tiskin, Toledo, 04]

NNZ Lower bound
on #words

Attained by

3n2 (“2D alg”)  (n2 / P1/2) [Cannon, 69]
3n2 P1/3 (“3D alg”)  (n2 / P2/3) [Johnson,93]

Lower bound for all “direct” linear algebra

• Holds for
• BLAS, LU, QR, eig, SVD, tensor contractions, …
• Some whole programs (sequences of these operations, no

matter how individual ops are interleaved, eg computing Ak)
• Dense and sparse matrices (where #flops << n3)
• Sequential and parallel algorithms
• Some graph-theoretic algorithms (eg Floyd-Warshall)
• See [BDHS09] 7

Let M = “fast” memory size per processor

#words_moved by at least one processor =
(#flops / M1/2)

#messages_sent by at least one processor =
(#flops / M3/2)

Can we attain these lower bounds?
• Do conventional dense algorithms as implemented in

LAPACK and ScaLAPACK attain these bounds?
• Mostly not

• If not, are there other algorithms that do?
• Yes

• Goals for algorithms:
• Minimize #words_moved =  (#flops/ M1/2)
• Minimize #messages =  (#flops/ M3/2)

• Need new data structures: (recursive) blocked
• Minimize for multiple memory hierarchy levels

• Cache-oblivious algorithms would be simplest
• Fewest flops when matrix fits in fastest memory

• Cache-oblivious algorithms don’t always attain this

• Only a few sparse algorithms so far (eg Cholesky) 8

Summary of dense sequential algorithms
attaining communication lower bounds

• Algorithms shown minimizing # Messages use (recursive) block layout
• Not possible with columnwise or rowwise layouts

• Many references (see reports), only some shown, plus ours
• Cache-oblivious are underlined, Green are ours, ? is unknown/future work

Algorithm 2 Levels of Memory Multiple Levels of Memory

#Words Moved and # Messages #Words Moved and #Messages

BLAS-3 Usual blocked or recursive algorithms Usual blocked algorithms (nested),
or recursive [Gustavson,97]

Cholesky LAPACK (with b = M1/2)
[Gustavson 97]

[BDHS09]

[Gustavson,97]
[Ahmed,Pingali,00]

[BDHS09]

(←same) (←same)

LU with
pivoting

LAPACK (rarely)
[Toledo,97] , [GDX 08]

[GDX 08]
not partial pivoting

[Toledo, 97]
[GDX 08]?

[GDX 08]?

QR
Rank-
revealing

LAPACK (rarely)
[Elmroth,Gustavson,98]

[DGHL08]

[Frens,Wise,03]
but 3x flops
[DGHL08]

[Elmroth,
Gustavson,98]

[DGHL08] ?

[Frens,Wise,03]
[DGHL08] ?

Eig, SVD Not LAPACK
[BDD10] randomized, but more flops

[BDD10] [BDD10]

Summary of dense 2D parallel algorithms
attaining communication lower bounds

• Assume nxn matrices on P processors, memory per processor = O(n2 / P)
• ScaLAPACK assumes best block size b chosen
• Many references (see reports), Green are ours
• Recall lower bounds:

#words_moved = (n2 / P1/2) and #messages = (P1/2)

Algorithm Reference Factor exceeding
lower bound for
#words_moved

Factor exceeding
lower bound for
#messages

Matrix multiply [Cannon, 69] 1 1
Cholesky ScaLAPACK log P log P
LU [GDX08]

ScaLAPACK
log P
log P

log P
(N / P1/2) · log P

QR [DGHL08]
ScaLAPACK

log P
log P

log3 P
(N / P1/2) · log P

Sym Eig, SVD [BDD10]
ScaLAPACK

log P
log P

log3 P
N / P1/2

Nonsym Eig [BDD10]
ScaLAPACK

log P
P1/2 · log P

log3 P
N · log P

QR of a Tall, Skinny matrix is bottleneck;
Use TSQR instead:

11

W =

Q00 R00
Q10 R10
Q20 R20
Q30 R30

W0
W1
W2
W3

Q00
Q10

Q20
Q30

= = .

R00
R10
R20
R30

R00
R10
R20
R30

=
Q01 R01
Q11 R11

Q01
Q11

= . R01
R11

R01
R11

= Q02 R02

Minimizing Communication in TSQR

W =

W0
W1
W2
W3

R00
R10
R20
R30

R01

R11

R02
Parallel:

W =

W0
W1
W2
W3

R01 R02

R00

R03

Sequential:

W =

W0
W1
W2
W3

R00
R01

R01

R11
R02

R11

R03

Dual Core:

Can Choose reduction tree dynamically

Multicore / Multisocket / Multirack / Multisite / Out-of-core: ?

TSQR Performance Results
• Parallel

– Intel Clovertown
– Up to 8x speedup (8 core, dual socket, 10M x 10)

– Pentium III cluster, Dolphin Interconnect, MPICH
• Up to 6.7x speedup (16 procs, 100K x 200)

– BlueGene/L
• Up to 4x speedup (32 procs, 1M x 50)

• Tesla – early results
• Up to 2.5x speedup (vs LAPACK on Nehalem)
• Better: 10x on Fermi with standard algorithm and better SGEMV

• Grid – 4x on 4 cities (Dongarra et al)
• Cloud – early result – up and running using Nexus

• Sequential
– Out-of-Core on PowerPC laptop

• As little as 2x slowdown vs (predicted) infinite DRAM
• LAPACK with virtual memory never finished

13

QR Factorization Intel 16 cores
Tall Skinny Matrices

14#cols = 51200 x #rows

G
flo

p/
s

0

20

40

60

80

100

120

140

160

180

200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000 3200

Theoretical Peak

DGEMM Peak

CAQR

PLASMA (2.1)

"MKL (10.1)"

"LAPACK (3.2)"

Quad Socket/Quad Core Intel Xeon
See LAPACK Working Note 222
Source: Jack Dongarra

N = #rows

Modeled Speedups of CAQR vs ScaLAPACK
(on n x n matrices; uses TSQR for panel factorization)

Petascale
up to 22.9x

IBM Power 5
up to 9.7x

“Grid”
up to 11x

Petascale machine with 8192 procs, each at 500 GFlops/s, a bandwidth of 4 GB/s.
./102,10,102 9512 wordsss   

Rank Revealing CAQR Decompositions

Randomized URV
• [V,R’] = caqr(randn(n,n))

[U,R] = caqr(A·VT)
• A = URV reveals the rank of A with

high probability
• Applies to A1

1· A2
1· A3

1 · · ·
• Used for eigensolver/SVD

QR with column pivoting
• “Tournament Pivoting” to

pick b best columns of 2
groups of b each

• Only works on single matrix

16

• Both cases: #words_moves = O(mn2/sqrt(M)),
or #passes_over_data = O(n/sqrt(M))

• Other CA decompositions with pivoting:
• LU (tournament, not partial pivoting, but stable!)
• Cholesky with diagonal pivoting
• LU with complete pivoting
• LDLT ?

Back to LU: Using similar idea for TSLU as TSQR:
Use reduction tree, to do “Tournament Pivoting”

Wnxb =

W1
W2
W3
W4

P1·L1·U1
P2·L2·U2
P3·L3·U3
P4·L4·U4

=

Choose b pivot rows of W1, call them W1’
Choose b pivot rows of W2, call them W2’
Choose b pivot rows of W3, call them W3’
Choose b pivot rows of W4, call them W4’

W1’
W2’
W3’
W4’

P12·L12·U12

P34·L34·U34

=
Choose b pivot rows, call them W12’

Choose b pivot rows, call them W34’

W12’
W34’

= P1234·L1234·U1234 Choose b pivot rows

Go back to W and use these b pivot rows
(move them to top, do LU without pivoting)

17

Making TSLU Numerically Stable

• Details matter
• Going up the tree, we could do LU either on original

rows of A (tournament pivoting), or computed rows of U
• Only tournament pivoting stable

• Thm: New scheme as stable as Partial Pivoting (GEPP) in
following sense: Get same Schur complements as GEPP
applied to different input matrix whose entries are blocks
taken from input A

18

What about algorithms like Strassen?
• Results for sequential case only
• Restatement of result so far for O(n3) matmul:

#words_moved = (n3 / M3/2 – 1)
• Lower bound for Strassen’s method:

#words_moved = (n / M/2 – 1) where  = log27
• Proof very different than before!
• Attained by usual recursive (cache-oblivious) implementation
• Also attained by new algorithms for LU, QR, eig, SVD that

use Strassen
• But not clear how to extend lower bound

• Also attained by fast matmul, LU, QR, eig, SVD for any 
• Can be made numerically stable
• True for any matrix multiplication algorithm that will ever be invented
• Conjecture: same lower bound as above

• What about parallelism? 19

Direct Linear Algebra: summary and future work
• Communication lower bounds on #words_moved and #messages

• BLAS, LU, Cholesky, QR, eig, SVD, tensor contractions, …
• Some whole programs (compositions of these operations,

no matter how individual ops are interleaved, eg computing Ak)
• Dense and sparse matrices (where #flops << n3)
• Sequential and parallel algorithms
• Some graph-theoretic algorithms (eg Floyd-Warshall)

• Algorithms that attain these lower bounds
• Nearly all dense problems (some open problems, eg LDL’)
• A few sparse problems

• Speed ups in theory and practice
• Extensions to Strassen-like algorithms
• Future work

• Lots to implement, autotune
• Next generation of Sca/LAPACK on heterogeneous architectures (MAGMA)

• Few algorithms in sparse case (just Cholesky)
• 3D Algorithms (only for Matmul so far), may be important for scaling 20

Avoiding Communication in Iterative Linear Algebra
• k-steps of typical iterative solver for sparse Ax=b or Ax=λx

• Does k SpMVs with starting vector
• Finds “best” solution among all linear combinations of these k+1 vectors
• Many such “Krylov Subspace Methods”

• Conjugate Gradients, GMRES, Lanczos, Arnoldi, …
• Goal: minimize communication in Krylov Subspace Methods

• Assume matrix “well-partitioned,” with modest surface-to-volume ratio
• Parallel implementation

• Conventional: O(k log p) messages, because k calls to SpMV
• New: O(log p) messages - optimal

• Serial implementation
• Conventional: O(k) moves of data from slow to fast memory
• New: O(1) moves of data – optimal

• Lots of speed up possible (modeled and measured)
• Price: some redundant computation

• Much prior work: See PhD Thesis by Mark Hoemmen
• See bebop.cs.berkeley.edu
• CG: [van Rosendale, 83], [Chronopoulos and Gear, 89]
• GMRES: [Walker, 88], [Joubert and Carey, 92], [Bai et al., 94]

21

x

Ax

A2x

A3x

A4x

A5x

A6x

A7x

A8x

Locally Dependent Entries for
[x,Ax], A tridiagonal, 2 processors

Can be computed without communication

Proc 1 Proc 2

x

Ax

A2x

A3x

A4x

A5x

A6x

A7x

A8x

Can be computed without communication

Proc 1 Proc 2

Locally Dependent Entries for
[x,Ax,A2x], A tridiagonal, 2 processors

x

Ax

A2x

A3x

A4x

A5x

A6x

A7x

A8x

Can be computed without communication

Proc 1 Proc 2

Locally Dependent Entries for
[x,Ax,…,A3x], A tridiagonal, 2 processors

x

Ax

A2x

A3x

A4x

A5x

A6x

A7x

A8x

Can be computed without communication

Proc 1 Proc 2

Locally Dependent Entries for
[x,Ax,…,A4x], A tridiagonal, 2 processors

x

Ax

A2x

A3x

A4x

A5x

A6x

A7x

A8x

Locally Dependent Entries for
[x,Ax,…,A8x], A tridiagonal, 2 processors

Can be computed without communication
k=8 fold reuse of A

Proc 1 Proc 2

Remotely Dependent Entries for
[x,Ax,…,A8x], A tridiagonal, 2 processors

One message to get data needed to compute remotely dependent entries, not k=8
Minimizes number of messages = latency cost

Price: redundant work  “surface/volume ratio”

Proc 1 Proc 2

x

Ax

A2x

A3x

A4x

A5x

A6x

A7x

A8x

Remotely Dependent Entries for [x,Ax,A2x,A3x],
A irregular, multiple processors

Sequential [x,Ax,…,A4x], with memory hierarchy

v

One read of matrix from slow memory, not k=4
Minimizes words moved = bandwidth cost

No redundant work

Minimizing Communication of GMRES to solve Ax=b
• GMRES: find x in span{b,Ab,…,Akb} minimizing || Ax-b ||2
• Cost of k steps of standard GMRES vs new GMRES

Standard GMRES
for i=1 to k

w = A · v(i-1)
MGS(w, v(0),…,v(i-1))
update v(i), H

endfor
solve LSQ problem with H

Sequential: #words_moved =
O(k·nnz) from SpMV

+ O(k2·n) from MGS
Parallel: #messages =

O(k) from SpMV
+ O(k2 · log p) from MGS

Communication-avoiding GMRES
W = [v, Av, A2v, … , Akv]
[Q,R] = TSQR(W) … “Tall Skinny QR”
Build H from R, solve LSQ problem

Sequential: #words_moved =
O(nnz) from SpMV

+ O(k·n) from TSQR
Parallel: #messages =

O(1) from computing W
+ O(log p) from TSQR

•Oops – W from power method, precision lost!
30

31

How to make CA-GMRES Stable?
• Use a different polynomial basis for the Krylov subspace
• Not Monomial basis W = [v, Av, A2v, …], instead [v, p1(A)v,p2(A)v,…]
• Possible choices:

• Newton Basis WN = [v, (A – θ1 I)v , (A – θ2 I)(A – θ1 I)v, …]
• Shifts θi chosen as approximate eigenvalues from Arnoldi
• Using same Krylov subspace, so “free”

• Chebyshev Basis WC = [v, T1(A)v, T2(A)v, …]
• Ti(z) chosen to be small in region of complex plane containing

large eigenvalues

32

“Monomial” basis [Ax,…,Akx]
fails to converge

Newton polynomial basis does converge

33

Speed ups of GMRES on 8-core Intel Clovertown
Requires co-tuning kernels

[MHDY09]

34

• Lots of algorithms to implement, autotune
• Make widely available via OSKI, Trilinos, PETSc, Python, …
• Job available…

• Extensions to other Krylov subspace methods
• So far just Lanczos/CG, Arnoldi/GMRES, BiCG
• Need BiCGStab, CGS, QMR, …

• Add preconditioning to solve MAx = Mb
• New kernel [x, Ax, MAx, AMAx, MAMAx, AMAMAx, …]
• Diagonal M easy
• Block diagonal M harder

• (AM)k quickly becomes dense but with low-rank off-diagonal blocks
• Extends to hierarchical, semiseparable M

• Theory exists, no implementations yet

Communication Avoiding Iterative Linear Algebra:
Future Work

35

For more information
• See papers at bebop.cs.berkeley.edu
• See slides for week-long short course

• Gene Golub SIAM Summer School in Numerical Linear Algebra
• www.ba.cnr.it/ISSNLA2010/index.htm

36

Summary

Don’t Communic…

37

Time to redesign all dense and sparse linear algebra

