Minimizing Communication in Linear Algebra

James Demmel 15 June 2010 www.cs.berkeley.edu/~demmel

Outline

- What is "communication" and why is it important to avoid?
- "Direct" Linear Algebra
 - Lower bounds on how much data must be moved to solve linear algebra problems like Ax=b, $Ax = \lambda x$, etc
 - Algorithms that attain these lower bounds
 - Not in standard libraries like Sca/LAPACK (yet!)
 - Large speed-ups possible
- "Iterative" Linear Algebra (Krylov Subspace Methods)
 - Ditto
- Extensions, open problems

Collaborators

- Grey Ballard, UCB EECS
- Jack Dongarra, UTK
- Ioana Dumitriu, U. Washington
- Laura Grigori, INRIA
- Ming Gu, UCB Math
- Mark Hoemmen, Sandia NL
- Olga Holtz, UCB Math & TU Berlin
- Julien Langou, U. Colorado Denver
- Marghoob Mohiyuddin, UCB EECS
- Oded Schwartz , TU Berlin
- Hua Xiang, INRIA
- Kathy Yelick, UCB EECS & NERSC
- BeBOP group at Berkeley

Thanks to Intel, Microsoft, UC Discovery, NSF, DOE, ... Motivation (1/2)

Algorithms have two costs:

1.Arithmetic (FLOPS)

2.Communication: moving data between

- levels of a memory hierarchy (sequential case)
- processors over a network (parallel case).

Motivation (2/2)

- Running time of an algorithm is sum of 3 terms:
 - # flops * time_per_flop
 - # words moved / bandwidth
 - # messages * latency

- communication
- Time_per_flop << 1/ bandwidth << latency
 - Gaps growing exponentially with time

Annual improvements			
Time_per_flop		Bandwidth	Latency
59%	Network	26%	15%
	DRAM	23%	5%

- Goal : reorganize linear algebra to avoid communication
 - Between all memory hierarchy levels
 - $L1 \leftrightarrow L2 \leftrightarrow DRAM \leftrightarrow$ network, etc
 - Not just *hiding* communication (speedup $\leq 2x$)
 - Arbitrary speedups possible

Direct linear algebra: Prior Work on Matmul

- Assume n³ algorithm (i.e. not Strassen-like)
- Sequential case, with fast memory of size M
 - Lower bound on #words moved to/from slow memory = $\Omega (n^3 / M^{1/2})$ [Hong, Kung, 81]
 - Attained using "blocked" algorithms
- Parallel case on P processors:
 - Let NNZ be total memory needed; assume load balanced
 - Lower bound on #words communicated = $\Omega (n^3 / (P \cdot NNZ)^{1/2})$ [Irony, Tiskin, Toledo, 04]

NNZ		Lower bound on #words	Attained by
3n ²	("2D alg")	Ω (n ² / P ^{1/2})	[Cannon, 69]
3n ² P ^{1/3}	("3D alg")	Ω (n ² / P ^{2/3})	[Johnson,93]

Lower bound for all "direct" linear algebra

Let M = "fast" memory size per processor

#words_moved by at least one processor = $\Omega(\text{#flops / M}^{1/2})$

#messages_sent by at least one processor = $\Omega(\text{#flops / M}^{3/2})$

- Holds for
 - BLAS, LU, QR, eig, SVD, tensor contractions, ...
 - Some whole programs (sequences of these operations, no matter how individual ops are interleaved, eg computing A^k)
 - Dense and sparse matrices (where #flops $<< n^3$)
 - Sequential and parallel algorithms
 - Some graph-theoretic algorithms (eg Floyd-Warshall)
 - See [BDHS09]

Can we attain these lower bounds?

- Do conventional dense algorithms as implemented in LAPACK and ScaLAPACK attain these bounds?
 - Mostly not
- If not, are there other algorithms that do?

• Yes

- Goals for algorithms:
 - Minimize #words_moved = Ω (#flops/ M^{1/2})
 - Minimize #messages = Ω (#flops/ M^{3/2})
 - Need new data structures: (recursive) blocked
 - Minimize for multiple memory hierarchy levels
 - Cache-oblivious algorithms would be simplest
 - Fewest flops when matrix fits in fastest memory
 - Cache-oblivious algorithms don't always attain this
- Only a few sparse algorithms so far (eg Cholesky)

Summary of dense <u>sequential</u> algorithms attaining communication lower bounds

- Algorithms shown minimizing # Messages use (recursive) block layout
 - Not possible with columnwise or rowwise layouts
- Many references (see reports), only some shown, plus ours
- Cache-oblivious are <u>underlined</u>, Green are ours, ? is unknown/future work

Algorithm	2 Levels of Memory		Multiple Levels of Memory	
	#Words Moved	and # Messages	#Words Moved	and #Messages
BLAS-3	Usual blocked or recursive algorithms		Usual blocked algorithms (nested), or recursive [Gustavson,97]	
Cholesky	LAPACK (with b = M ^{1/2}) [<u>Gustavson 97]</u> [<u>BDHS09</u>]	[<u>Gustavson,97]</u> [<u>Ahmed,Pingali,00]</u> [<u>BDHS09]</u>	(←same)	(←same)
LU with pivoting	LAPACK (rarely) [Toledo,97] , [GDX 08]	[GDX 08] <i>not</i> partial pivoting	[Toledo, 97] [GDX 08] ?	[GDX 08] <mark>?</mark>
QR Rank- revealing	LAPACK (rarely) [Elmroth,Gustavson,98] [DGHL08]	[<u>Frens,Wise,03]</u> but 3x flops [DGHL08]	[<u>Elmroth,</u> <u>Gustavson,98]</u> [DGHL08] ?	[<u>Frens,Wise,03</u>] [DGHL08] ?
Eig, SVD	<i>Not</i> LAPACK [BDD10] randomized, but more flops		[<u>BDD10</u>]	[BDD10]

Summary of dense <u>2D parallel</u> algorithms attaining communication lower bounds

- Assume nxn matrices on P processors, memory per processor = $O(n^2 / P)$
- ScaLAPACK assumes best block size b chosen
- Many references (see reports), Green are ours
- Recall lower bounds:

#words_moved = $\Omega(n^2 / P^{1/2})$ and #messages = $\Omega(P^{1/2})$

Algorithm	Reference	Factor exceeding lower bound for #words_moved	Factor exceeding lower bound for #messages
Matrix multiply	[Cannon, 69]	1	1
Cholesky	ScaLAPACK	log P	log P
LU	[GDX08]	log P	log P
	ScaLAPACK	log P	(N / P¹/²) ⋅ log P
QR	[DGHL08]	log P	log ³ P
	ScaLAPACK	log P	(N / P ^{1/2}) ⋅ log P
Sym Eig, SVD	[BDD10]	log P	log ³ P
	ScaLAPACK	log P	N / P ^{1/2}
Nonsym Eig	[BDD10]	<mark>log P</mark>	log ³ P
	ScaLAPACK	P ^{1/2} ⋅ log P	N ⋅ log P

QR of a Tall, Skinny matrix is bottleneck; Use TSQR instead:

$$\begin{bmatrix} \mathsf{R}_{00} \\ \mathsf{R}_{10} \\ \mathsf{R}_{20} \\ \mathsf{R}_{30} \end{bmatrix} = \begin{bmatrix} \underline{\mathsf{Q}_{01} \ \mathsf{R}_{01}} \\ \overline{\mathsf{Q}_{11} \ \mathsf{R}_{11}} \end{bmatrix} = \begin{bmatrix} \underline{\mathsf{Q}_{01}} \\ \overline{\mathsf{Q}_{11}} \end{bmatrix} \cdot \begin{bmatrix} \mathsf{R}_{01} \\ \mathsf{R}_{11} \end{bmatrix}$$
$$\begin{bmatrix} \underline{\mathsf{R}_{01}} \\ \mathsf{R}_{11} \end{bmatrix} = \begin{bmatrix} \mathsf{Q}_{02} \ \mathsf{R}_{02} \end{bmatrix}$$

Minimizing Communication in TSQR

Parallel:
$$W = \begin{bmatrix} W_0 \\ W_1 \\ W_2 \\ W_3 \end{bmatrix} \xrightarrow{\rightarrow} R_{10} \xrightarrow{\rightarrow} R_{01} \xrightarrow{\rightarrow} R_{02}$$
Sequential: $W = \begin{bmatrix} W_0 \\ W_1 \\ W_2 \\ W_3 \end{bmatrix} \xrightarrow{\rightarrow} R_{00} \xrightarrow{\rightarrow} R_{01} \xrightarrow{\rightarrow} R_{02} \xrightarrow{\rightarrow} R_{03}$ Dual Core: $W = \begin{bmatrix} W_0 \\ W_1 \\ W_2 \\ W_3 \end{bmatrix} \xrightarrow{\rightarrow} R_{01} \xrightarrow{\rightarrow} R_{01} \xrightarrow{\rightarrow} R_{02} \xrightarrow{\rightarrow} R_{03}$

Multicore / Multisocket / Multirack / Multisite / Out-of-core: ? Can Choose reduction tree dynamically

TSQR Performance Results

- Parallel
 - Intel Clovertown
 - Up to 8x speedup (8 core, dual socket, 10M x 10)
 - Pentium III cluster, Dolphin Interconnect, MPICH
 - Up to 6.7x speedup (16 procs, 100K x 200)
 - BlueGene/L
 - Up to 4x speedup (32 procs, 1M x 50)
 - Tesla early results
 - Up to 2.5x speedup (vs LAPACK on Nehalem)
 - Better: 10x on Fermi with standard algorithm and better SGEMV
 - Grid 4x on 4 cities (Dongarra et al)
 - Cloud early result up and running using Nexus
- Sequential
 - Out-of-Core on PowerPC laptop
 - As little as 2x slowdown vs (predicted) infinite DRAM
 - LAPACK with virtual memory never finished

QR Factorization Intel 16 cores Tall Skinny Matrices

Quad Socket/Quad Core Intel Xeon See LAPACK Working Note 222 Source: Jack Dongarra

#cols = *51200* x #rows

Modeled Speedups of CAQR vs ScaLAPACK (on n x n matrices; uses TSQR for panel factorization)

Petascale machine with 8192 procs, each at 500 GFlops/s, a bandwidth of 4 GB/s. $\gamma = 2 \cdot 10^{-12} s, \alpha = 10^{-5} s, \beta = 2 \cdot 10^{-9} s / word.$

Rank Revealing CAQR Decompositions

Randomized URV	QR with column pivoting
• $[V,R'] = caqr(randn(n,n))$	"Tournament Pivoting" to pick b best columns of 2
• $A = URV$ reveals the rank of A with	groups of b each
high probability	 Only works on single matrix 1 1 1
• Applies to $A_1^{\pm 1} \cdot A_2^{\pm 1} \cdot A_3^{\pm 1} \cdot \cdot \cdot$	
 Used for eigensolver/SVD 	
 Both cases: #words_moves 	$= O(mn^2/sqrt(M)), \qquad \uparrow \uparrow \uparrow$
or #passes_over_data	= O(n/sqrt(M))

- Other CA decompositions with pivoting:
 - LU (tournament, not partial pivoting, but stable!)
 - Cholesky with diagonal pivoting
 - LU with complete pivoting
 - LDL^T ?

Back to LU: Using similar idea for TSLU as TSQR: Use reduction tree, to do "Tournament Pivoting"

$$\frac{W_1}{W_2} = \frac{\begin{pmatrix} P_1 \cdot L_1 \cdot U_1 \\ P_2 \cdot L_2 \cdot U_2 \\ P_3 \cdot L_3 \cdot U_3 \\ P_4 \cdot L_4 \cdot U_4 \end{pmatrix}}{P_4 \cdot L_4 \cdot U_4}$$

Choose b pivot rows of W_1 , call them W_1 ' Choose b pivot rows of W_2 , call them W_2 ' Choose b pivot rows of W_3 , call them W_3 ' Choose b pivot rows of W_4 , call them W_4 '

$$\begin{bmatrix} W_{1}' \\ W_{2}' \\ W_{3}' \\ W_{4}' \end{bmatrix} = \begin{bmatrix} P_{12} \cdot L_{12} \cdot U_{12} \\ P_{34} \cdot L_{34} \cdot U_{34} \end{bmatrix}$$

Choose b pivot rows, call them W_{12} '

Choose b pivot rows, call them W_{34} '

$$\begin{pmatrix} W_{12} \\ W_{34} \end{pmatrix} = P_{1234} \cdot L_{1234} \cdot U_{1234}$$
 Choose b pivot rows

Go back to W and use these b pivot rows (move them to top, do LU without pivoting)

Making TSLU Numerically Stable

- Details matter
 - Going up the tree, we could do LU either on original rows of A (tournament pivoting), or computed rows of U
 - Only tournament pivoting stable
- Thm: New scheme as stable as Partial Pivoting (GEPP) in following sense: Get same Schur complements as GEPP applied to different input matrix whose entries are blocks taken from input A

What about algorithms like Strassen?

- Results for sequential case only
- Restatement of result so far for O(n^3) matmul: #words_moved = $\Omega(n^3 / M^{3/2 - 1})$
- Lower bound for Strassen's method:

#words_moved = $\Omega(n^{\omega} / M^{\omega/2 - 1})$ where $\omega = \log_2 7$

- Proof very different than before!
- Attained by usual recursive (cache-oblivious) implementation
- Also attained by new algorithms for LU, QR, eig, SVD that use Strassen
 - But not clear how to extend lower bound
- Also attained by fast matmul, LU, QR, eig, SVD for any ω
 - Can be made numerically stable
 - True for any matrix multiplication algorithm that will ever be invented
 - Conjecture: same lower bound as above
- What about parallelism?

Direct Linear Algebra: summary and future work

- Communication lower bounds on #words_moved and #messages
 - BLAS, LU, Cholesky, QR, eig, SVD, tensor contractions, ...
 - Some whole programs (compositions of these operations, no matter how individual ops are interleaved, eg computing A^k)
 - Dense and sparse matrices (where #flops << n³)
 - Sequential and parallel algorithms
 - Some graph-theoretic algorithms (eg Floyd-Warshall)
- Algorithms that attain these lower bounds
 - Nearly all dense problems (some open problems, eg LDL')
 - A few sparse problems
- Speed ups in theory and practice
- Extensions to Strassen-like algorithms
- Future work
 - Lots to implement, autotune
 - Next generation of Sca/LAPACK on heterogeneous architectures (MAGMA)
 - Few algorithms in sparse case (just Cholesky)
 - 3D Algorithms (only for Matmul so far), may be important for scaling

Avoiding Communication in Iterative Linear Algebra

- k-steps of typical iterative solver for sparse Ax=b or Ax= λx
 - Does k SpMVs with starting vector
 - Finds "best" solution among all linear combinations of these k+1 vectors
 - Many such "Krylov Subspace Methods"
 - Conjugate Gradients, GMRES, Lanczos, Arnoldi, ...
- Goal: minimize communication in Krylov Subspace Methods
 - Assume matrix "well-partitioned," with modest surface-to-volume ratio
 - Parallel implementation
 - Conventional: O(k log p) messages, because k calls to SpMV
 - New: O(log p) messages optimal
 - Serial implementation
 - Conventional: O(k) moves of data from slow to fast memory
 - New: O(1) moves of data optimal
- Lots of speed up possible (modeled and measured)
 - Price: some redundant computation
- Much prior work: See PhD Thesis by Mark Hoemmen
 - See bebop.cs.berkeley.edu
 - CG: [van Rosendale, 83], [Chronopoulos and Gear, 89]
 - GMRES: [Walker, 88], [Joubert and Carey, 92], [Bai et al., 94]

Locally Dependent Entries for [x,Ax], A tridiagonal, 2 processors

Locally Dependent Entries for [x,Ax,A²x], A tridiagonal, 2 processors

Locally Dependent Entries for [x,Ax,...,A³x], A tridiagonal, 2 processors

Locally Dependent Entries for [x,Ax,...,A⁴x], A tridiagonal, 2 processors

Locally Dependent Entries for [x,Ax,...,A⁸x], A tridiagonal, 2 processors

Remotely Dependent Entries for [x,Ax,...,A⁸x], A tridiagonal, 2 processors

Price: redundant work \propto **"surface/volume ratio"**

<u>Remotely Dependent Entries for [x,Ax,A²x,A³x],</u> A irregular, multiple processors

Sequential [x,Ax,...,A⁴x], with memory hierarchy

Minimizing Communication of GMRES to solve Ax=b

- GMRES: find x in span{b,Ab,...,A^kb} minimizing || Ax-b ||₂
- Cost of k steps of standard GMRES vs new GMRES

```
Standard GMRES
for i=1 to k
w = A · v(i-1)
MGS(w, v(0),...,v(i-1))
update v(i), H
endfor
solve LSQ problem with H
```

Sequential: #words_moved = O(k·nnz) from SpMV + O(k²·n) from MGS Parallel: #messages = O(k) from SpMV + O(k² · log p) from MGS Communication-avoiding GMRES W = [v, Av, A²v, ..., A^kv] [Q,R] = TSQR(W) ... "Tall Skinny QR" Build H from R, solve LSQ problem

Sequential: #words_moved = O(nnz) from SpMV + O(k·n) from TSQR Parallel: #messages = O(1) from computing W + O(log p) from TSQR

Oops – W from power method, precision lost!

How to make CA-GMRES Stable?

- Use a different polynomial basis for the Krylov subspace
- Not Monomial basis W = [v, Av, A^2v , ...], instead [v, $p_1(A)v$, $p_2(A)v$,...]
- Possible choices:
 - Newton Basis $W_N = [v, (A \theta_1 I)v, (A \theta_2 I)(A \theta_1 I)v, ...]$
 - Shifts θ_i chosen as approximate eigenvalues from Arnoldi
 - Using same Krylov subspace, so "free"
 - Chebyshev Basis $W_C = [v, T_1(A)v, T_2(A)v, ...]$
 - T_i(z) chosen to be small in region of complex plane containing large eigenvalues

Speed ups of GMRES on 8-core Intel Clovertown Requires co-tuning kernels

Communication Avoiding Iterative Linear Algebra: Future Work

- Lots of algorithms to implement, autotune
 - Make widely available via OSKI, Trilinos, PETSc, Python, ...
 - Job available...
- Extensions to other Krylov subspace methods
 - So far just Lanczos/CG, Arnoldi/GMRES, BiCG
 - Need BiCGStab, CGS, QMR, ...
- Add preconditioning to solve MAx = Mb
 - New kernel [x, Ax, MAx, AMAx, MAMAx, AMAMAx, ...]
 - Diagonal M easy
 - Block diagonal M harder
 - (AM)k quickly becomes dense but with low-rank off-diagonal blocks
 - Extends to hierarchical, semiseparable M
 - Theory exists, no implementations yet

For more information

- See papers at bebop.cs.berkeley.edu
- See slides for week-long short course
 - Gene Golub SIAM Summer School in Numerical Linear Algebra
 - www.ba.cnr.it/ISSNLA2010/index.htm

Time to redesign all dense and sparse linear algebra

Don't Communic...