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2. The Input Data

Aisann X d matrix, Bisn x d’
Matrix entries are given as a sequence of updates

o

o
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An update specifies %, j, v, and A or B, so that A;; <— A;; + v, or similiarly for B
» The turnstile streaming model

This is even more demanding than taking one pass over A and B fixed in memory

o

;. The General Algorithmic Approach

o As updates appear: maintain compressed versions of A and B

» Sketches
o When ready: compute output results using sketches
o Key resources: passes (=1 here), space, update time, compute time

+. The Problems

We give provably good estimators for:
o Product: ATB

o Regression: the matrix X* minimizing || AX — Bl
= A slightly generalized version of least-squares regression
= All norms here Frobenius, so ||A|| := [Zi’jA?j]lﬂ

o Low Rank Approximation: the matrix A, of rank k minimizing ||A — Ag||
= For k given beforehand

o The rank of A



s. General Properties of Our Algorithms
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Provable error bounds, with high probability

The error is measured using the Frobenius norm

For some problems, our sketches as small as possible
= For a given error

o O

» When A and B have appropriate-sized integer entries

(¢]

Sketches may also be useful in a distributed setting, where matrix entries are scattered

= _.and one pass => few rounds of communication

. Randomized Matrix Compression

In a line of similar efforts...
o Elementwise sampling [AMO1][AHKO06]
o Row/column sampling: pick small random subsets of the rows, columns, or both
[DKO1][DKMO04]
= Sample probability based on Euclidean norm of row or column
= Or even: probability based on norm of vector in SVD
= In general, needs two passes
= Whole row or column samples are good "examples", and may preserve sparsity
o (Here) Sketching/Random Projection: maintain a small number of random linear combinations
of rows or columns [S06]

o Our upper bound work is ~ a followup to [S06]
= cf. Rokhlin-Szlam-Tygert, Halko-Martinsson-Tropp

7. Approximate Matrix Product

o A and B have nrows, we want to estimate ATB

o Let Sbe an n X m sign matrix
s A K.A. Rademacher or Bernoulli

» Each entry is +1 or —1 with probability 1/2

= m = O(1), to be specified

= Independent entries, for now
o Our estimate of AT Bis ATSSTB/m = (STA)TSTB/m
o That is, sketches are S TAand S*B

= Compressing the columns from n down to m



. Time and Space Bounds

o Update time is O(m), since only one column of S Tis needed per update
o Space is O(md) for STA, O(md') for STB
= O(m) space for S, via limiting independence of S entries
o Compute time, for product of sketches, is O(mdd') = O(mc?),c:=d+d’

= Can be done in O(dd") [Coppersmith]
= That is, we have optimal space, number of passes, and compute time

. Expected Error, and a Tail Estimate

o From E[SS”]/m = I and linearity of expectation,

E[ATSSTB/m] = ATE[SST|B/m = ATB

o

So in expectation, sketch product is a good estimate of the product
This is true also with high probability

That is, for §,€ > 0, there is m = O(e 2 log(1/d)) so that

o

(¢]

Prob{[[A[| > €[|A[[|B||} < &

= Here A is the error A7SS"B/m — A"B
This tail estimate seems to be new
= Bound holds when entries of S are O(log(1/4))}wise independent
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0. Lower Bound on Space

o The sketch size O(Me~21og(1/d)) is only a log c factor improvement, ¢ = d + d’
» Entries are M = O(log(nc)) bit integers

o However: the new upper bound matches our new space lower bound Q(Mec/ 62)
= Failure probability 6 <1/4

= Large enough n and ¢



1. Framework of Proof of Lower Bound

o Reduction from a communication task
= Alice has random z € {0,1}°

= Bob has random 2
= Alice must send data to Bob so that he can learn z;
o For even 2/3 chance of success, Alice must send €2(s) bits

= Even when Bob already knows x,; for i’ > i [MNSW]
o Given a product algorithm using small sketches:

= Alice can encode x in A, send sketch of A to Bob

= Bob can use B and sketch of A to estimate AT B, and find x;

1. Regression

o The problem again: minx||AX — B||2
o X minimizing this has X* = A™ B,

where A" is the pseudo-inverse of A
o The algorithm is:

= Maintain S”A and S”B
= Return X solving miny||ST(AX — B)||
o Main claim: if A has rank k,
there is m = O(ke ! log(1/)) so that with probability at least 1 — &
|AX— Bl| < (1+0)|AX" ~ B|

= That is, relative error for X is small



3. Regression Analysis Ideas

o Why should X be so good?
o For fixed Y, ||ST(AY— B)|| ~ ||AY— B||

= Just as for a random projection

o If the norm is preserved for all Y, we're done
o ST must preserve norm even of X, chosen using S
o The main idea: show that || STA(X* — X)|| is small

= Using normal equations of sketched problem, matrix mult. results

o Use this to show || A(X* — X)|| is small

o Use this to show the result
= Using normal equations of exact problem

1. Best Low-Rank Approximation

o For any matrix A and integer k, there is a matrix Ay of rank k that is closest to A among all
matrices of rank k
o Since rank of Ay is k, it is the product CDT of two k-column matrices C'and D
= (A} can be found from the SVD (singular value decomposition), where C'and D are
orthogonal matrices U and V)
» This is a good compression of A

» If entries of A are noisy measurements, often the noise is "compressed out" in this way
= LSI, PCA, Eigen*, recommender systems, clustering,...

5. Best Low-Rank Approximation and S A

The sketch STA holds a lot of information about A
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In particular, there is a rank k matrix Ay, in the rowspace of ST A nearly as close to A as A,

o

» The rowspace of S T A is the set of linear combinations of its rows

That is, A—AkH < (1+4¢)||lA— Ay

This is shown using the regression results
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o



1. Nearly Best Nearly-Low-Rank Approximation

o A similar observation applies in transpose

o Suppose Ris a d X m sign matrix (recall Aisn X d)
o The columnspace of AR contains a nearly best rank-k approximation to A
o That is, X minimizing || ARX — A||has ||[ARX — A|| < (1 +€)||A — Ay
o Now minimize sketched version ||STARX — STA||
o Solution is X' = (STAR) ™ STA with
JARX' — Al| < (1+ || ARX — AJ| < (1+ )% 4 — Ay

» Since AR has rank ke !, Smust be n x m’, with m’ = ke 2

i7. Nearly Best Nearly-Low-Rank Algorithm

o An algorithm: maintain ARand STA, return ARX' = AR(STAR) STA
= Rankis k/e
» Distance to Ais (1 +€)||A— Ayl

o This approximation to A is interesting in its own right

= No SVD required, only pseudo-inverse of a matrix of constant size

is. Nearly Best Low-Rank Approximation

Still haven't found a good rank k matrix

o To do this, we find the best rank-k approximation to
AR(S TAR) ~ ST Ain the columnspace of AR
o The resulting upper bound on space is a bigger w.r.t. than our lower bound

o When A is given a column at a time, or a row at a time, we can do better



0. Concluding Remarks

o Space bounds are tight for product, regression
= Faster update times?
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Space bounds are not tight w.r.t. € for low-rank approximation

= Upper bounds are at fault, probably
= We have better upper bounds for restricted cases

The entry-wise 7-norm of the error matrix A can also be bounded
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= This implies a bound on ||A[| .. in terms of ||A]|; ., and ||B||; .,

max
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Other projection matrices besides sign matrices?
For what other problems is the full power of the JL transform not needed?
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Thank you for your attention



