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Convex optimization

e Convex optimization arises in control, signal processing,
machine learning, finance etc.

@ Several known algorithms such as gradient descent, Newton
method, interior point methods etc.

@ Upper bounds on computational complexities for specific
methods well-studied.

@ Relatively little research on fundamental hardness of convex
optimization.

@ Minimum computation needed by any algorithm to solve a
convex optimization problem.



A Motivating Example

o Classical statistics studies sample complexity to obtain a
certain estimation error.

@ Example: binary classification using Support Vector Machines
(SVM).
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@ Example: binary classification using Support Vector Machines
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A Motivating Example

o Classical statistics studies sample complexity to obtain a
certain estimation error.

@ Example: binary classification using Support Vector Machines
(SVM).

Samples {(x1,y1), - (X, ¥n)} € (R? x {—1,1})" drawn i.i.d..

o Learn a mapping f : R — {—1,1} to predict y given x.

o Predict using sign(wopt ’ x).

e Optimal Wopt minimizes the criterion:

1 A
Wopt = arg min, — Z max{0,1 — y;w’x} + §HW||2
i=1




Estimation error vs. computational budget

@ Learning theory studies error bounds:
. 1< [In1/6
T T
P(y # sign(wopt ' x)) = 2 max{0,1 — yjw " xj} + O ( n)

with probability > 1 — 4.



Estimation error vs. computational budget

@ Learning theory studies error bounds:

Py # Sign(WOPtTX)) = % Z max{0,1 — y;WTXi} + 0O (W)

i=1

with probability > 1 — 4.
@ Sample complexity natural when samples are few.

@ Often assumed that computation is abundant.
o Given enough samples, wopt can be computed efficiently.



Challenges with large datasets

@ Large and high-dimensional datasets shift bottleneck from
samples to computation.

® Wopt result of non-linear non-smooth optimization problem.

@ Interested in decay of estimation error with increasing
computational budget.

@ Algorithm independent understanding of computational
complexity.



Optimization for Estimation

@ Many estimators expressed as results of optimization
problems.

@ Most learning algorithms based on minimizing a convex
objective function.
@ Examples:
o binary classification (e.g. SVM, logistic regression, boosting
etc.)
o least squares regression (e.g. ridge, lasso etc.)
e non-parametric estimation (kernel ridge regression, basis
pursuit etc.)
o Complexity of optimization: essential for understanding
statistical complexity.



Convex Optimization setup

e Optimization Problem: min,cs f(x) = f(x¢).
S is a convex, compact set in RY.

f is an (unknown) function picked from a class F.

Algorithm told S and F.

o
o
@ We assume F is some subset of all convex functions.
o
e Goal: Find x such that f(x) — f(xf) <.

f(x)

Xf



First-order oracle model of complexity

e Work within oracle complexity model [NY’83].

@ Optimization proceeds in rounds t =1,..., T.

@ At time t, an algorithm M proposes x; as its guess for xf.
@ Oracle returns (f(x¢), VI (xt)).

Vf(x1)
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First-order oracle model of complexity

e Work within oracle complexity model [NY’83].

@ Optimization proceeds in rounds t =1,..., T.
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@ Oracle returns (f(x¢), VF(xt)).




First-order oracle model of complexity

Work within oracle complexity model [NY'83].

Optimization proceeds in rounds t =1,..., T.

Oracle returns (f(xt), VI (xt)).

Algorithms such as gradient descent, ellipsoid method,
quasi-Newton methods etc.

o
o
@ At time t, an algorithm M proposes x; as its guess for xr.
o
o




Oracle model contd.

e Optimization error: ¢ (M, f) = f(x7) — f(xf).

@ Oracle Complexity:
Smallest T (e, M, f) such that f(x7) — f(xr) < e.

e Minimax Complexity:

inf sup T(e, M, ).
M feF
~~ ~—

Best algorithm  yorst function

o Equivalently, for a fixed T study infrq suprer e7(M,f).




Stochastic first-order oracle model of complexity

@ At time t, an algorithm M proposes x; as its guess for xr.

Oracle returns (f(x¢), Z(xt)).

@ Unbiased function values: E?(xt) = f(x¢).

Unbiased gradients: EZ(x;) = V£ (x¢).

e Bounded variance: E||Z(x:)||? < 2.

Algorithms such as stochastic gradient descent, mirror
descent, stocastic approximation procedures etc.



Stochastic Oracle model contd.

e Optimization error: e (M, f) = Ef(x1) — f(xf).

@ Oracle Complexity:
Smallest T (e, M, f) such that Ef (x7) — f(xr) < e.

e Minimax Complexity:

inf sup T(e, M, ).
M feF
~~ ~—

Best algorithm  yorst function

e Equivalently, for a fixed T study infyq supscr E e (M, ).



Complexity lower bounds for convex, Lipschitz functions

o Let Fcv(S, L) be the class of all convex functions f : S — R
such that

|f(x)—f(y)| < L||x—yl|ls, equivalently ||[Vf(x)|1 <L Vx,y €S.
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Complexity lower bounds for convex, Lipschitz functions

o Let Fcy(S, L) be the class of all convex functions f : S +— R
such that

[f(x)—f(y)| < L||x—y|lco, equivalently ||[Vf(x)|1 <L Vx,y€S.

No method can produce an e-approximate optimizer for every

. . . 2 .
convex, Lipschitz function in fewer than O (r ﬁzd) queries.

@ r is the radius of the largest /., ball contained in S.

@ Lower bound achieved by stochastic gradient descent.



Complexity lower bounds for strongly convex functions

o Let Fscv(S, L,7) be the class of all functions f € Fey(S, L)
such that

) = F0)+ (VA x— ) + S llx = yi3

@ Functions with lower bounded curvature, widely studied in
optimization.




Complexity lower bounds for strongly convex functions

o Let Fscv(S, L,7y) be the class of all functions f € Fey(S, L)
such that

2
F() 2 Fy) + (V) x = y) + - Ix = yI3.

No method can produce an e-approximate optimizer for every
strongly convex, Lipschitz function in fewer than O (%) queries.

@ Lower bound attained by stochastic gradient descent.



Lower bounds for convex functions with sparse optima

o Let Fsp(S, L, k) be the class of all convex functions f such
that x¢ has at most k non-zero entries and

|f(x)—f(y)| < L||x—yll1, equivalently ||[Vf(x)|lcc <L Vx,y €S.



Lower bounds for convex functions with sparse optima

o Let Fsp(S, L, k) be the class of all convex functions f such
that x¢ has at most k non-zero entries and

|f(x)—f(y)| < L||x—yll1, equivalently ||[Vf(x)|lcc <L Vx,y €S.

No method can produce an e-approximate optimizer for every
L2K? Iog g

function in Fsp(S, L, k) in fewer than O < ) queries.

@ Much milder logarithmic dependence on dimension d.

@ Lower bound attained by the method of mirror descent
([NY’83], [BT'03]).



Proof intuition

@ Proofs based on identifying a hard subset of functions.
@ Lower bound based on optimizing every function in hard
subset well.

e Want a hard subset of functions with
e Any two functions far enough so no algorithm can get lucky.

Xr  Xg

g(xf) —glxg) <€



Proof intuition

@ Proofs based on identifying a hard subset of functions.

@ Lower bound based on optimizing every function in hard
subset well.
@ Want a hard subset of functions with

e Any two functions far enough so no algorithm can get lucky.
e Large enough number of functions to force a lot of queries.

1
€

Xf Xg

g(xr) —g(xg) < e Large packing set of functions.



The p semimetric

700+ 800 = ) ~ e

f.g) = inf
p(f,g) inf,

e p(f,g) >0, doesn't obey triangle inequality.
e p(f,g) =0if and only if xr = xg.
@ Measures how different f and g are for optimization.

[x +5]




Proof Outline

@ Design a p-separated subclass of F.
@ Algorithm needs to identify oracle’s f.

@ Stochastic first-order oracle corrupts (f(x:), VF(x;)) with
noise.

o ldentifying f equivalent to estimating f from noisy samples.

@ Use sample complexity results for the estimation problem to
lower bound number of queries.



A p-separated subclass of Fcy

o Let S=[-1/2,1/2]¢
o Define £;7(x) = [1/2 + x(i)], £ (x) = |1/2 — x(i)|.

o For a € {—1,1}9 define

£ = Z:; (; + a,-5> FH(x) + (; - a,-5> £ (x)




Conclusions

@ Obtain tight minimax lower bounds on oracle complexity for
stochastic convex optimization.

@ Clean information theoretic proofs through reduction to a
parameter estimation problem.

@ Identify the p semimetric natural for optimization.

@ Bounds show optimality of stochastic gradient descent and
stochastic mirror descent for certain problems.
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