
1/29

�
�
�
�
�
�
	

Incorporating Query Difference for

Learning Retrieval Functions
in Web Search

Hongyuan Zha, Zhaohui Zheng, Haoying Fu, Gordon Sun
The Pennsylvania State University/Yahoo! Inc.

MMDS, Stanford, June 21-24, 2006

2/29

�
�
�
�
�
�
	

Outline

• Web search

• A Risk Minimization Framework/Multi-task Learning

• aTVT: Incorporating Query Difference

• Experiments

3/29

�
�
�
�
�
�
	

Introduction

• Retrieval functions: rank documents in response to user queries

• Retrieval models and methods (research done in IR/WWW/NA):

– vector space model

– probabilistic model

– many more ...

[Algorithms and methods from machine learning]

4/29

�
�
�
�
�
�
	

Search Engine Ranking Problems

Input: user queries

Output: ranked lists of documents

Basic procedure (Multi-stage ranking)

1) Intial stages: select a list of documents potentially relevant to the

query using cheaper features

2) Later stages: use more expensive features to generate ranked list of

documents

5/29

�
�
�
�
�
�
	

Examples

1) select documents that contain all the required query words: inter-

secting inverted word lists (basic IR methods)

2) ranking based on simple linear combinations of features

3) (cluster of machines) parallel execution of the above

6/29

�
�
�
�
�
�
	

Examples (Cont’d)

Extracting other features:

1. Query-document feastures
title

url path

abstract/description (from the metatags)

keyphrases (comma separated list of phrases)

body (rest of document)

anchortext (anchortext pointing to document)

...
2. Document features (link, spam, etc.)

3. Query features (length, language, category, etc.)

7/29

�
�
�
�
�
�
	

Designing Ranking Functions

The feature vector x = [x1, . . . , xn] is extracted for each query-

document pair, the goal is to construct a function h(x) such that

h(x) > h(x′)

implies that x is more relevant than x′, i.e., list of documents can be

sorted according to {h(x)}.

1) Manual Tuning (function form and/or parameter values)

2) Using machine learning methods: collect training set with labeled

data, learn ranking functions either as a problem of

classification/regression/ranking

8/29

�
�
�
�
�
�
	

Generate Training Set

1. Sample queries from query logs

2. Obtain query-url pairs

3. Judges score query-url pairs by assigning grades: perfect, good, ...

⇒ training data in the form of labeled feature vectors for query-

document pairs {(xi, yi)}Ni=1.

Need to find a function h to match judges’ grades, i.e.,

h(xi) ≈ yi, i = 1, . . . , N.

9/29

�
�
�
�
�
�
	

Outline

• Web search

• A Risk Minimization Framework/Multi-task Learning

• aTVT: Incorporating Query Difference

• Experiments

10/29

�
�
�
�
�
�
	

A Risk Minimization Framework

D, the set of all the documents

L, the set of labels (perfect, good, ...)

Q, the set of all potential user queries

Model each query q ∈ Q as a probabilistic distribution Pq over D×L,

Pq(d, `), d ∈ D, ` ∈ L

i.e., the probability of document d being labeled as ` w.r.t. query q.

11/29

�
�
�
�
�
�
	

A loss function L over the set L × L,

L : L × L 7→ R1
+.

A class of functions H to select the retrieval function,

h : D 7→ L.

For a specific query q, the learning problem (classification or regression

problem): find h∗q ∈ H

h∗q = arg min h∈H EPq(d,l)L(`, h(d)).

Minimizing expected loss!

12/29

�
�
�
�
�
�
	

Many Queries

1) Web search is not about learning h∗q for some particular q

2) Learn a retrieval function h∗ that will be good for all q ∈ Q
3) Conceptually, need to deal with potentially infinite number of

related learning problems, each for one of the query q ∈ Q.

A multi-task learning problem

Specify a distribution over Q: PQ(q) indicate the probability that a

specific query q is issued, approximated by frequency in the query logs.

Risk Minimization

h∗ = arg minh∈H EPQ
EPqL(`, h(q, d))

13/29

�
�
�
�
�
�
	

Empirically ...

1) Sample a set of queries {qi}Qi=1 from the distribution PQ, for each

q, and sample a set of documents from D for labeling⇒ training data,

{dqj, lqj}, q = 1, . . . , Q, j = 1, . . . , nq

2) Empirical risk minimization with regularization,

h∗ = arg minh∈H

Q∑
q=1

nq∑
j=1

L(`qj, h(q, dqj)) + λ Ω(h)︸ ︷︷ ︸
reg. term

14/29

�
�
�
�
�
�
	

An Oversimplified Example

q1: ”harvard university”, 13 million search results on Yahoo

q2: ”college of san mateo”, two orders of magnitude less results

A retrieval function h(x) using x = # inbound links to a document.

q1 : x = 100000 (P), 80000(G), 50000(B)

q2 : x = 1000 (P), 800 (P), 500 (B)

0⇔ perfect, 1⇔ good, 2⇔ bad.

Need to find a monotonically decreasing function h such that for q1

h(100000) ≈ 0, h(80000) ≈ 1, h(50000) ≈ 2

and for q2,

h(1000) ≈ 0, h(800) ≈ 1, h(500) ≈ 2.

15/29

�
�
�
�
�
�
	

Query Classes

Training set, [dqj, q]⇔ xqj, lqj ⇔ yqj,

{xqj, yqj}, q = 1, . . . , Q, j = 1, . . . , nq,

xqj denotes the feature vector for the query-document pair {q, dqj}.
Split xqj into three parts,

xqj = [xQ
qj, xD

qj, xQD
qj]

Two extremes:

1) Only use [xD
qj, xQD

qj], ignoring query difference

2) Have one hq([x
D
qj, xQD

qj]) for each query q ∈ Q.

Better:

A single function hq([x
D
qj, xD

qj, xQD
qj]).

But it is hard to figure out the right (granularity of) xD
qj.

16/29

�
�
�
�
�
�
	

Nuisance Parameters/Latent Variables

Basic idea: let the data implicitly capture this set of adequate query-

features and bypass its explicit construction.

[Introduction of nuisance parameters (functions)/latent variables]

17/29

�
�
�
�
�
�
	

Incorporating Query Difference

We use regression with squared-error loss function,

L(h) =

Q∑
q=1

nq∑
j=1

(yqj − h(xqj))
2.

To incorporate query-dependent effects, we seek to find h and gq, q =

1, . . . , Q, to minimize

L(h, g) =

Q∑
q=1

nq∑
j=1

[yqj − gq(h(xqj))]
2, (1)

where gq(·) is a general monotonically increasing function, and g =

[g1, . . . , gQ].

18/29

�
�
�
�
�
�
	

• gq captures the difference of queries

• related to response transformation in regression

• for a new query q∗ ⇒ gq∗, but rankings based on gq∗(h) and h are

exactly the same

For simplicity, we focus on the linear case,

gq(x) = βq + αqx, q = 1, . . . , Q

with αq ≥ 0.

Optimization on the regularized empirical risk

L(h, β, α) =

Q∑
q=1

nq∑
j=1

[yqj − βq − αqh(xqj)]
2+

+λβ‖β‖pp + λα‖α‖pp + λhΩ(h),

where β = [β1, . . . , βQ] and α = [α1, . . . , αQ], and λβ, λα and λh are

regularization parameters.

19/29

�
�
�
�
�
�
	

Coordinate Descent

Basic idea: alternate between optimizing against h and optimizing

against β and α.

Nonlinear regression

For fixed β and α, define the modified residuals

ŷqj = (yqj − βq)/αq, q = 1, . . . , Q, j = 1, . . . , nq.

Then find h to solve the following weighted nonlinear regression problem

Q∑
q=1

nq∑
j=1

α2
q[ŷqj − h(xqj)]

2 + λhΩ(h).

We use gradient boosting to estimate h.

20/29

�
�
�
�
�
�
	

Optimize against β and α

For fixed h,

min
β,α

Q∑
q=1

nq∑
j=1

[yqj − βq − αqh(xqj)]
2 + λβ‖β‖pp + λα‖α‖pp.

Decouple into Q separate optimization problems, for q = 1, . . . , Q,

min
βq,αq

nq∑
j=1

[yqj − βq − αqh(xqj)]
2 + λβ|βq|p + λα|αq|p.

21/29

�
�
�
�
�
�
	

Convergence Analysis

H a reproducing kernel Hilbert space (RKHS) with kernel function

K, and Ω(h) = ‖h‖2K .

Theorem 1. The optimal function h∗ for the optimization has

the following form,

h∗(x) =

Q∑
q=1

nq∑
j=1

cqjK(xqj, x),

where cqj, q = 1, . . . , Q, j = 1, . . . , nq, are real numbers.

Theorem 2. Every limit point of {ck, βk, αk}∞k=1 is a stationary

point of L(c, β, α).

22/29

�
�
�
�
�
�
	

Data Collection

• randomly sample a certain number of queries from the query logs.

• label documents

• we finally represent each query-url pair with a feature vector.

of queries ∼ O(103) and # of query-url pairs ∼ O(105)

23/29

�
�
�
�
�
�
	

Feature Engineering

For each query-document pair (q, d) with q ∈ Q and d ∈ D, a feature

vector x = [xQ, xD, xQD] is generated,

• Query-feature vector xQ, e.g., the number of terms in the query,

whether or not the query is a person name, etc.

• Document-feature vector xD, e.g., the number of inbound links

pointing to the document, the amount of anchor-texts in bytes for

the document, and the language identity of the document, etc.

• Query-document feature vector xQD, e.g., the number of times each

term in the query q appears in the document d, the number of times

each term in the query q appears in the anchor-texts of the document

d, etc.

24/29

�
�
�
�
�
�
	

Experiment methodology

min
{αq,βq}

nq∑
j=1

(αqyqj + βq − h(xqj))
2 + λα|(αq − 1)|pp + λβ|βq|pp.

Algorithm. Adaptive Target Value Tranformation (aTVT).

For each choice of regularization parameters λα and λβ,

1) initialize y0
qj to the assigned numerical values for each query-document

pair (q, d);

2) iterate until the αk
q and βk

q do not change much, do the following,

a) fit a nonlinear function on {yk−1
qj } using gradient boosting.

b) obtain optimal values for the αk
q and βk

q .

c) yk
qj ← αk

qy
k−1
qj + βk

q .

Then αq =
∏K

k=1 αk
q , and βq =

∑K
k=1(β

k
q

∏K
i=k+1 αi

q).

25/29

�
�
�
�
�
�
	

Performance Measures

(K. Järvelin and J. Kekäläinen, 2002)

1 . Precision-recall used in IR

2 . DCG (Discounted Cumulative Gain): Gain values G.

List of K ranked documents with gain vector G,

DCG =

K∑
i=1

G(i)

log2(1 + i)
.

26/29

�
�
�
�
�
�
	

Cross-validation for Comparison

• Randomly split the set of queries in data set into 10 folds and obtain

10 9-vs-1 combinations.

• For each 9-vs-1 combination, do the following:

– learn a retrieval function using the data in the 9 folds as training

data with and without aTVT, respectively.

– test the learned retrieval function on the remaining one fold by

computing the DCG values for the queries in the one fold.

• concatenate the above lists from the 10 combinations together to

obtain a full list of query-dcg pairs for all the queries in the data set.

• Finally, we conduct Wilcoxon signed rank tests on the two lists and

obtain the p-values.

27/29

�
�
�
�
�
�
	

Table 1: The dcgs and percentage dcg increases of retrieval function
with aTVT over without aTVT and p values.

λβ=1 10

λα=1 (+1.6%,p=0.01) (+1.7%,p=0.006)
10 (+2.00%,p=0.002) (+1.9%,p=0.002)
50 (+1.8%,p=0.002) (+1.8%,p=0.008)

100 (+1.8%,p=0.007) (+1.7%,p=0.003)

28/29

�
�
�
�
�
�
	

Table 2: dcg gains and corresponding p-values for queries sorted ac-
cording to |α0.1 − 1.0| + |β/10|

top queries dcg gain of aTVT p-value

200 5.3% 0.002
300 4.2% 0.002
400 4.0% 0.0004
500 3.4% 0.0006
600 2.8% 0.001
700 2.6% 0.0006
800 2.3% 0.0005
all 2.0% 0.002

29/29

�
�
�
�
�
�
	

Recap

• Web search ⇒ multi-task learning⇒ aTVT

• Internet/Web: sources of interesting and challenging problems

	Outline
	Introduction
	Search Engine Ranking Problems
	Examples
	Examples (Cont'd)
	Designing Ranking Functions
	Generate Training Set
	Outline
	A Risk Minimization Framework
	Many Queries
	Empirically ...
	An Oversimplified Example
	Query Classes
	Nuisance Parameters/Latent Variables
	Incorporating Query Difference
	Coordinate Descent
	Convergence Analysis
	Recap

