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Three                  -time algorithms

Solving symmetric, 
diagonally-dominant linear systems

Sparsification: 
approximating graphs by sparse subgraphs

Partitioning:
Approximately balanced, cutting few edges
By growing clusters, locally, from seed vertices
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Weighted Graphs and Laplacian Matrices

1 2 3

Laplacian matrix of weighted graph
= negative of weight from i to j

diagonal = weighted degree

Corresponding Quadratic Form:
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Example:

7 5 6

Weighted Graphs and Laplacian Matrices

1 2 3

Corresponding Quadratic Form:
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Graphic Inequalities and Approximating Graphs

For example, if H is a subgraph of G

H is quality      approximation of G if 

iff                   is positive semi-definite
if
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Preconditioned Conjugate Gradient

Accuracy

Iterative Methods 

Find easy-to-solve B that approximates A
Solve in time

Quality
of approximation

Time to solve
By = c
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Every graph can be well-approximated by a sparse graph

Feder-M otw ani ’91, B enczur-K arger ‘96

Sparsification Theorems
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Sparsification Theorems
Sparsifier:  Given G, find weighted subgraph H s.t.

in time

#edges(H) <

Ultra-Sparsifier:

in time

#edges(H) <

tree + few edges, so can solve H quickly
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Find                                in time

Linear System Solvers
For symmetric, diagonally dominant A, any b

no other assumptions

If planar:

(m is number of non-zeros in A)
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Linear System Solvers 
from subgraph preconditioners

(V aid ya ’90) 

Most nodes have degree 1 or 2, 
so can Cholesky factor to smaller system, 
and solve recursively

(Joshi ’97), (R eif ’98)
(G rem ban, M iller ’96)

(Bern, Boman, Chen, Gilbert, 
H endrickson, N guyen, T oledo ’01)
(B om an, H endrickson ’01)
(S , T eng ’03)
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Simplest Sparsification: Complete Graph

If A is Laplacian of Kn, 
all non-zero eigenvalues are n

If B is Laplacian of Ramanujan expander 
all non-zero eigenvalues satisfy

And so
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Example: Random Sampling Fails

If H does not contain middle edge,

Kn

G

Kn 
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Example: Grid plus edge

11 1

= (m-1)2 + k(m-1)

(m-1)2

1
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Conductance
Cut = partition of vertices

Conductance of S 

S

Conductance of G 
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Conductance and Sparsification

If conductance high (expander) 
can precondition by random sampling

If conductance low
can partition graph by removing few edges

Decomposition:
Partition of vertex set into big pieces 

remove few edges
graph on each partition has high conductance
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Graph Partitioning Algorithms

Linear Programming: too slow

Spectral: one cut quickly, 
but can be unbalanced      many runs

M ultilevel (C haco/M etis): can’t analyze,
miss small sparse cuts
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Local Clustering
Cluster: Set of verts S 

Given random vertex inside cluster S,
find a cluster T of size at most 2|S|
mostly inside S
time

when
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Local Clustering by Truncated Diffusion

Compute probability distribution of
random walk, rounding small values to zero

If slow convergence, then low conductance
And, can find the cut from highest probability nodes

.137
.135

.134
.129 .112

.094

Lovasz-Simonovits Theorem (modified)
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Future Work

Practical Local Clustering

Other applications of sparsification

Practicality of solvers
(Khandekar-Rao-Vazirani?)

Computing eigenvectors

Solvers for other families of linear systems
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“N early -Linear Time Algorithms for Graph 
Paritioning, Sparsification, and Solving Linear 
S ystem s” (S T O C  04, A rxiv)

To learn more

Will be split into two papers:
numerical and combinatorial
available mid-July

My lecture notes for
Spectral Graph Theory and its Applications


