
Workshop on Modern Massive Data Matrices,

Palo Alto 2006.

General Thoughts : Bad historical accident

that Numerical and Scientific Computation and

Algorithms and Complexity do not have more

to do with each other.

NA has a couple of centuries work to offer

Alg.’s.

Alg.’s (once you get beyond our seeming ob-

session with poly time) has a lot to offer. Ran-

domization is certainly one of them....
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Simple Starting Question : How does one pick

a good random sample of rows of a matrix A

quickly ?
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Good : Want R to represent A. Many possible

measures of what is good.

Basis Rows of R span row space of A (and

independent)...

Modify to : Row span of R contains a vector

“close” to each/most rows of A. Interpolative

approximation.
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Here simpler notion of good :

ATA ≈ RTR.

Notation A is m × n.

Number of rows in sample = s. (s << m, n.)
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Quickly : Could mean polynomial time.

Here : Massive Matrices. Perhaps cannot be

stored in full in RAM. [More generally, models

of computation for handling massive data - eg.

the streaming model......

Quickly : In one or two passes thro’ A.

Randomization will help.

Uniform random sample won’t do : All but one

row zero !!

Sample with probabilities depending on size of

entries in row.
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The Length-squared distribution : Pick rows

with probabilities proportional to their squared

lengths : Make s i.i.d. trials. In each trial, pick

a row A(i) (the i th row of A) with

Probability of picking row i =
|A(i)|2

||A||2F
.

If A(i) is picked, include a scaled version : A(i)/
√

sPi

as the next row of R.

If all row lengths are equal, uniform sampling

will do and no scaling is necessary.

[In fact, same if all row lengths are within O(1)

of each other.]
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Two Properties of the sampling

Unbiased E(RTR) = ATA.

This distribution minimizes the total variance

E||ATA − RTR||2F .

[Measuring E||ATA − RTR||2F greatly simplifies

the expression.]

For most results, approx length-squared distri-

bution, where probability of picking row i is at

least
c|A(i)|2
||A||2F

suffices.

— Frieze, K., Vempala (1998)

Many other properties of the distribution - fast

SVD.....
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How good is this sample ?

s is the number of sampled rows.

Lemma For every matrix A,

E||RTR − ATA||2F ≤ 1

s
||A||4F .

Only interesting if

||A||4F
||ATA||2F

is small.

Condition equivalent to

The top O(1) singular values form Ω(1) part

of the “spectrum” of A.
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Above for ATA can be generalized to multiply-

ing any two matrices. – Drineas, K.

RTR ≈ ATA implies the singular values of R ≈
the singular values of A. Can be quantified by

Hoffman-Wielandt inequality.

More difficult questions Can one also say the

same about the singular vectors of A, R ? Is

there a sense in which

R ≈ A?
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No free lunch

We cannot hope to pick from any general m×n

matrix, a set of s << m, n rows to form an R

with RTR close to ATA. Call a matrix A a PCA

matrix if for k ∈ O(1) :

λ1(A
TA) + λ2(A

TA) + . . . λk(A
TA) ≥ c||A||2F .

Then, above says : E||RTR−ATA||2F ≤ ε||ATA||2F
for s ∈ O(1). Myriad applications of Principal

Component Analysis(assume matrix is a PCA

matrix or more strongly that they are numeri-

cally low-rank) include :

Consumer-Product matrices

Document-term matrices

Test scores- Students matrices....

TCS contribution : Low-rank approximations

to matrices and their extensions to tensors can

also help solve combinatorial optimization prob-

lems.
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Approximating A itself

Suppose C is a random subset of s columns

of A picked according to the length-squared

distribution (and scaled as above) and R is a

subset of s rows of A ” ” ” . From just C, R,

we can find an s × s matrix U such that

E||A − CUR||F ≤ ||A − A
s1/5||F +

4

s1/5
||A||F ,

E||A − CUR||2 ≤ ||A − A
s1/5||2 +

4

s1/5
||A||F ,

[where, Ak is the best rank k approximation

to A and ||A||2 denotes the spectral norm.] –

Drineas, K., also Drineas, K., Mahoney.
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Sparsity preserved

Further matrix-vector products Ax can be ap-

proximated by C(U(Rx)).
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Matrix Reconstruction

m users and n products. Aij measures the pref-

erence of user i for product j.

Suppose we have observed some entries of the

matrix. Can we infer the other entries ? [So,

having observed some market behaviour, we

want to recommend to users what they would

like.]

[Recommendations Systems / Collaborative fil-

tering]

Azar, Fiat, Karlin, McSherry and Saia

Achlioptas and McSherry

Drineas, Kerenidis and Raghavan
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Achlioptas and McSherry’s algorithm :

p probability. Independently for each entry Aij

of matrix, replace it with Aij/p with probability

(w.p) p and 0 with probability 1− p. So, num-

ber of non-zero entries reduced by a factor of

p.

Âij =

{

0 w.p.1 − p
Aij/p w.p.p.
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If |Aij| ≤ 1, WHP, ||A − Â||2 is small.

*** Coming Attractions See Achlioptas’s talk.

****
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“Exponential convergence” of Kaczmarz equa-

tion solver :

Ax = b

At iteration k : have xk. Get xk+1 by adding to

xk the l.h.s. of any violated equation suitably

scaled :

xk+1 = xk +
bi − (A(i) · xk)

|A(i)|
A(i).

Strohmer and Vershynin (2006): A is m × n

with rank n. If at each step, i is chosen accord-

ing to the length-squared distribution, then for

x∗ with Ax∗ = b,

E|xk − x∗|2 ≤
(

1 − 1

R2

)k
|x∗ − x0|2,

where R = ||A||F/σmin(A).
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What is wrong with the length-squared distri-

bution ?

An Example : A has the first m − 1 rows all

equal and the last row orthogonal to them; all

rows are of length 1. [Drineas, Vempala]

Best rank 2 approximation : A itself. Error=0.

Repeated sampling only yields the first vector.

Error 6< O( best error ) !!
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Two Issues : Relative Error Get a low-rank

approximation Â to A so that

||A − Â||F ≤ (1 + ε)||A − Ak||F .

(Recall : Ak best rank k approx to A.)

“Interpolative” approximation Get an Â which

is in the span of at most s (s small) rows of A.

Deshpande, Rademacher, Vempala, Wong; Drineas,

Mahoney, Muthukrishnan; Sarlos; Har-Peled;

Martinson, Rokhlin and Tygert all address these

questions.

***COMING ATTRACTIONS ******
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Sarlos : Take s random (i.i.d.) linear combi-

nations of the rows of A. Find best approxi-

mation Â to A in their span. Then with high

probability :

||A − Â||F ≤ (1 + ε)||A − Ak||F ,

provided s ≥ ck2 logm/ε.

One intuition : If one performs a random ro-

tation of A on the left, one gets vectors all of

roughly the same length. So

length-squared distribution ≈ picking first s....

More direct proof using classic and recent re-

sults on random projections in Sarlos. One

issue : Random vectors are dense. But sparse

random vectors with same properties recently

developed....

Also tackles l2 linear regression.
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Martinson, Rokhlin, Tygert : Independent de-

velopment on similar lines. But s ≈ k + 20.

(No oversampling !). But weaker error bounds

of the form (for m = n) :

Error in spectral norm at most O(kn)σk+1(A).

Much better Empirical results.
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Tensors

Max-3-SAT : Given a Boolean CNF formula

with 3 literals per clause, find an assignment

to the variables satisfying as many clauses as

possible. x1, x2, . . . xn 0-1 variables. Let S =

{(x1, x2, . . . xn,1 − x1,1 − x2, . . .1 − xn) : xi ∈
{0,1}}. Max-3-SAT can be formulated as :

Maxy∈S :
∑

i,j,k

Ai,j,kyiyjyk.

Rank 1 3-tensor : Outer product of 3 vectors

: u ⊗ v ⊗ w =
(

uivjwk

)

.

Low Rank Approximation (LRA) of tensors :

Approximate by a sum of a small number of

rank 1 tensors. If we can find a LRA B, replace

A by B; solve exploiting the low rank of B.

Existence, Computation ??? — Golub and

Lim; SATURDAY
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Existence Lemma For any r− tensor A, ε > 0,

there exist k ≤ 1/ε2 rank-1 tensors, B1, B2, . . . Bk

such that

||A − (B1 + B2 + . . . Bk)||2 ≤ ε||A||F .

ComputationTheorem For any r−tensor (r fixed)

A, ε > 0, we can find k rank 1 tensors B1, B2, . . . Bk,

where k ≤ 100/ε2, in time (n/ε)O(1/ε4) such

that with high probability we have

||A − (B1 + B2 + . . . Bk)||2 ≤ ε||A||F .

—- de la Vega, K., Karpinski and Vempala

Notation : ||A||2 is the spectral norm =

Maxu,v,wA(u, v, w) =
∑

ijk Aijkuivjwk over all unit

length vectors.
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Finding LRA for 3-tensors Enough to find u, v, w

to maximize

A(u, v, w) =
∑

ijk

Aijkuivjwk.

Point 1 If u, v are known,

w = A(u, v, ·) =
∑

ij

Aij·uivj (6)

suffices.

Point 2 We can estimate the sum in the r.h.s.

of (6) if we have just O(1) terms picked ac-

cording to the length-squared distribution. For

this, need only O(1) ui, vj !!

Point 3 We can enumerate all possible values

of these O(1) ui, vj and find all candidate w.

Point 4 We can check which candidate w is

best by finding maximum eigenvalue of each

matrix A(·, ·, w) !!
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