Workshop on Modern Massive Data Matrices,
Palo Alto 2006.

General Thoughts : Bad historical accident
that Numerical and Scientific Computation and
Algorithms and Complexity do not have more
to do with each other.

NA has a couple of centuries work to offer
Alg.’s.

Alg.'s (once you get beyond our seeming ob-
session with poly time) has a lot to offer. Ran-
domization is certainly one of them....



Simple Starting Question : How does one pick
a good random sample of rows of a matrix A
quickly 7

Good : Want R to represent A. Many possible
measures of what is good.

Basis Rows of R span row space of A (and
independent)...

Modify to : Row span of R contains a vector
“close” to each/most rows of A. Interpolative
approximation.



Here simpler notion of good
ATA ~ RTR.

Notation A is m X n.

Number of rows in sample = 5. (s << m,n.)



Quickly : Could mean polynomial time.

Here : Massive Matrices. Perhaps cannot be
stored in full in RAM. [More generally, models
of computation for handling massive data - eg.
the streaming model......

Quickly : In one or two passes thro' A.

Randomization will help.

Uniform random sample won't do : All but one
row zero !l

Sample with probabilities depending on size of
entries in row.



The Length-squared distribution : Pick rows
with probabilities proportional to their

- Make s i.i.d. trials. In each trial, pick
a row A,y (the i th row of A) with

A2
14]12

If A(Z-) is picked, include a scaled version : A(i)/\/SPZ'
as the next row of R.

Probability of picking row ¢ =

If all row lengths are equal, uniform sampling
will do and no scaling is necessary.

[In fact, same if all row lengths are within O(1)
of each other.]



Two Properties of the sampling

Unbiased E(R'R) = AT A.
This distribution minimizes the total variance
E||ATA - RTR||2.

[Measuring E||AT A — RTR||2 greatly simplifies
the expression.]

For most results, approx length-squared distri-

bution, where probability of picking row 1z is at
C|A(z')|2 :

~— Suffices.
Al %

least

— Frieze, K., Vempala (1998)

Many other properties of the distribution - fast



How good is this sample 7
s is the number of sampled rows.

Lemma For every matrix A,

1
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Only interesting if

4
IIAIIF2
|ATA|l%

IS small.
Condition equivalent to

The top O(1) singular values form (1) part
of the “spectrum” of A.



Above for AT A can be generalized to multiply-
ing any two matrices. — Drineas, K.

RTR ~ AT A implies the singular values of R =
the singular values of A. Can be quantified by
Hoffman-Wielandt inequality.

More difficult questions Can one also say the
same about the singular vectors of AR 7 1Is
there a sense in which

R~ A7



No free lunch

We cannot hope to pick from any general mxn
matrix, a set of s << m,n rows to form an R
with RT'R close to AT A. Call a matrix A a PCA
matrix if for k € O(1) :

A (ATA) + 20(ATA) + .. 2,(ATA) > || A2

Then, above says : E||[RTR—ATA||2 < €]|AT A||%
for s € O(1). Myriad applications of Principal
Component Analysis(assume matrix is a PCA
matrix or more strongly that they are numeri-
cally low-rank) include :

Consumer-Product matrices
Document-term matrices
Test scores- Students matrices....

TCS contribution : Low-rank approximations
to matrices and their extensions to tensors can
also help solve combinatorial optimization prob-
lems.



Approximating A itself

Suppose C' is a random subset of s columns
of A picked according to the length-squared
distribution (and scaled as above) and R is a

subset of srows of A" " " . From just C, R,
we can find an s x s matrix U such that
4

E||[A - CUR||p < |[|[A—=A_15llF + 7= 1AllF
S1/5

4
El|A - CUR||2 < |[A = A sl + 775lAllF,
s1/5

[where, A, is the best rank k approximation
to A and ||Al|»> denotes the spectral norm.] —
Drineas, K., also Drineas, K., Mahoney.
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Q

(2)

c || v |- R (3)

Sparsity preserved

Further matrix-vector products Ax can be ap-
proximated by C(U(Rzx)).

11



Matrix Reconstruction

m users and n products. Az-j measures the pref-
erence of user ¢ for product j.

Suppose we have observed some entries of the
matrix. Can we infer the other entries 7 [So,
having observed some market behaviour, we
want to recommend to users what they would
like.]

[Recommendations Systems / Collaborative fil-
tering]

Azar, Fiat, Karlin, McSherry and Saia
Achlioptas and McSherry

Drineas, Kerenidis and Raghavan
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Achlioptas and McSherry’'s algorithm :

p probability. Independently for each entry Az-j
of matrix, replace it with A;;/p with probability
(w.p) p and O with probability 1 —p. So, num-

ber of non-zero entries reduced by a factor of
jor

A= O w.pl-—p
v Aii/p W.p.p.

5 3 3 -2 —r 8 9

1 2 2 —-17 1 -89 |— (4
21 41 22 -2 0 0 O

106 0 0 —14 16 O
2 4 0 0 0 -16 18 (5)
0 0440 0O 0 O

If |A;;| <1, WHP, ||A — Af|3 is small.

*** Coming Attractions See Achlioptas’'s talk.
% ok >k %
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“Exponential convergence” of Kaczmarz equa-
tion solver :

Ax = b

At iteration k£ : have xj. Get x4 by adding to
xp the l.h.s. of any violated equation suitably
scaled :

Strohmer and Vershynin (2006): A is m X n
with rank n. If at each step, 2 is chosen accord-
ing to the length-squared distribution, then for
xz* with Ax™ = b,

1 k
*12 * 2
Elx; — 7| S(l—ﬁ) =™ — z0]|”%,

where R = ||Al|p/omin(4).
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What is wrong with the length-squared distri-
bution 7

An Example : A has the first m — 1 rows all
equal and the last row orthogonal to them; all
rows are of length 1. [Drineas, Vempala]

Best rank 2 approximation : A itself. Error=0.

Repeated sampling only vields the first vector.
Error £ O( best error ) !
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Two Issues : Relative Error Get a low-rank
approximation A to A so that

1A = Allp < (1 + O)[|A - AgllF
(Recall : A best rank k approx to A.)

“Interpolative’” approximation Get an A which
is in the span of at most s (s small) rows of A.

Deshpande, Rademacher, Vempala, Wong; Drineas,
Mahoney, Muthukrishnan; Sarlos; Har-Peled;
Martinson, Rokhlin and Tygert all address these
questions.

**xkCOMING AT TRACTIONS **ksok
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Sarlos : Take s random (i.i.d.) linear combi-
nations of the rows of A. Find best approxi-
mation A to A in their span. Then with high
probability :

|A—Allp < (14 ¢)||A— Axllp,
provided s > ck?logm/e.

One intuition : If one performs a random ro-
tation of A on the left, one gets vectors all of
roughly the same length. So

length-squared distribution =~ picking first s....

More direct proof using classic and recent re-
sults on random projections in Sarlos. One
issue : Random vectors are dense. But sparse
random vectors with same properties recently
developed....

Also tackles [, linear regression.
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Martinson, Rokhlin, Tygert : Independent de-
velopment on similar lines. But s = k + 20.
(No oversampling !). But weaker error bounds
of the form (for m = n) :

Error in spectral norm at most O(kn)oy41(A).
Much better Empirical results.
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‘Tensors

Max-3-SAT : Given a Boolean CNF formula
with 3 literals per clause, find an assignment
to the variables satisfying as many clauses as
possible. xq1,xzo,...xn 0-1 variables. Let § =
{(x1,22,...2n,1 — 21,1 —2o,...1 — ) : x; €
{0,1}}. Max-3-SAT can be formulated as :

MaXycg : Z A; i kYiYiYk-
1,5,k
Rank 1 3-tensor : Outer product of 3 vectors
L URLURW = (uivjwk).

Low Rank Approximation (LRA) of tensors :
Approximate by a sum of a small number of
rank 1 tensors. If we can find a LRA B, replace
A by B; solve exploiting the low rank of B.

Existence, Computation 7?77? — Golub and
Lim; SATURDAY
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Existence Lemma For any r— tensor A, € > 0,
there exist k < 1/€e2 rank-1 tensors, By, Bo, ... B;
such that

|A — (B1+ Ba+...Bg)l||l2 < €|AllF.

ComputationTheorem For any r—tensor (r fixed)
A,e > 0, we can find k rank 1 tensors B4, B, ... B,
where k& < 100/€2, in time (n/e)?(1/¢") such
that with high probability we have

|A—(B1+ Bax+...Bg)||l2 < €l|A]|F.
—- de la Vega, K., Karpinski and Vempala

Notation : ||A||> is the spectral norm =

MaXuy,v,wA(u, v, w) = 32k Asjruvjwg over all unit
length vectors.
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Finding LRA for 3-tensors Enough to find w, v, w
to maximize

Alu,v,w) = ZAz'jkuz"ijk-
ijk
Point 1 If u,v are known,

w — A(u, v, ) — ZAz'j-uin (6)
)
suffices.

Point 2 We can estimate the sum in the r.h.s.
of (6) if we have just O(1) terms picked ac-
cording to the length-squared distribution. For
this, need only O(1) u;, vj !

Point 3 We can enumerate all possible values
of these O(1) u;,v; and find all candidate w.

Point 4 We can check which candidate w is
best by finding of each
matrix A(-,-,w) !
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