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Chapter 1

In tro duction
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Figure 1.1: Choleraepidemicin London 1854. Dr. Snow placeddots at the addressesof the
deceasedand saw the concentration of deathsaround the Broad street water pump. From
E.W.Gilb ert, Geog. J. 124] (1958) { By permissionfrom E.R.Tufte \ The Visual Display of
Quantitativ e Information", Graphic Press1983p. 244
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Figure 1.2: Multiv ariate data mapped to faces;each parametercorrespondsand is measured
on a facial feature. H. Cherno�, JASA 68 (1973)
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Figure 1.3: Parallel Coordinates { examplefor 5D.
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Figure 1.4: (Left)Region of Sloveniawhere7 typesof groundemissionsweremeasuredby the
LandSat Thematic Mapper and shown in subsequent �gures { Thanks to Dr. Ana Tretjak
and Dr. Niko Schlamberger, Statistics O�ce of Slovenia. (Right) The display is the map's
rectangular region, the dot marks the position where the 7-tuple shown in the next �gure
was measured.

Figure 1.5: Query showing a singledata item: the X ; Y (position alsoshown on the right of
Fig. 1.4) and valuesof the 7-tuple (B1; B2; B3; B4; B5; B6; B7) at that point.
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Figure 1.6: Finding water regions. The contrast due to density di�erences around the lower
valuesof B4 is the visual cueprompting this query.

Figure 1.7: (Left)The lake and { result of query shown in Fig. 1.6 and (Right) just its
boundary { result of query shown in Fig. ??.
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Figure 1.8: A dataset with 32 parametersand two categoriesis shown in the background.
On the left plot are the �rst two parametersin the original order. The automatic classi�er
found the 9 parametersneededto state the rule with 4 % error and orderedaccordingto their
predictive value. The best two parametersare plotted on the right showing the separation
achieved.
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Chapter 2

The Plane R2 with k-coords

Figure 2.1: Points, above (3; � 1), on the plane are represented by lines.
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With d the distancebetweenthe axesthe correspondenceis :

l ine ` : x2 = mx1 + b  ! point �̀ : (
d

1 � m
;

b
1 � m

) m 6= 1: (2.1)

Lines with negative slope m < 0 (negative correlation) are mapped into points betweenthe
axes,m > 1 to the left of the �X 1 and 0 < m < 1 to the right of the �X 2 axes. To include
lines with m = 1 the Euclidean plane R2 is embeddedin the Projective plane P2. Then a
line with slope m = 1 is mapped in the direction alsocalled ideal point with slope b=d.
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Figure 2.2: Conversely, lines are represented by points inducing a point  ! line duality.
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Figure 2.3: Model of the Projective Plane. Euclideanpoints are mapped into surfacepoints
of the hemisphereand ideal points/dir ections are mapped into the diametersof the \cap"
with the samedirection.

Homogeneouscoordinates are very convenient and the conversion to/from Cartesian is
easyi.e. Cartesian (a;b) ! (a;b;1) ! k(a;b;1) f or k 6= 0:

Sometimesit is preferableto describe the line ` by :

` : a1x1 + a2x2 + a3 = 0 (2.2)

and for a2 6= 0, m = � a1
a2

and b= � a3
a2

, providing the correspondence:

` : [a1; a2; a3] � ! �̀ : (da2; � a3; a1 + a2): (2.3)

In turn this speci�es a linear transformation betweenthe triples ` and �̀ :

�̀ = Al ; l = A � 1 �̀;
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where` and �̀ are consideredas column vectors. The 3 � 3 matrix is :

A =

2

4
0 d 0
0 0 � 1
1 1 0

3

5 ; A � 1 =

2

4
� 1=d 0 1

1=d 0 0
0 � 1 0

3

5 : (2.4)

which can be easily computed by taking 3 simple triples, like for example, [1,0,0], [0,1,0]
and [0,0,1] for `. For the other half of the duality, we look into the point P ! �P line
correspondencewhich is given by:

P : (p1; p2; p3) � ! �P : [(p1 � p2); dp3; � dp1]: (2.5)

Again taking P and �P as column vectorswe have:

�P = B � 1P ; P = B �P

Figure 2.4: Under the duality parallel linesmap into points on the samevertical line. On the
projective planemodel, the great semi-circlesrepresenting the lines sharethe samediameter
since the lines have the sameideal point (direction). An ideal point in the direction with
slope m is mapped into the vertical line �P1

m .
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with

B � 1 =

2

4
� 1 1 0

0 0 � d
d 0 0

3

5 ; B =

2

4
0 0 1=d
1 0 1=d
0 � 1=d 0

3

5 : (2.6)

Figure 2.5: Dualit y : Rotation of a line about a point $ Translation of a point on a line.
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Figure 2.6: (a)Square,(b)3-D cube (c) 5-D hypercube all with unit side. All vertices,edges,
facesof all order can be seen{ after learning the contents of sectionsLines & Planes.
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Chapter 3

Multidimensional Lines

Adjacen t Variables Form

What is \a line in RN " ?
In R3 a line is the intersection of two planes. So a line ` in RN is the intersection of N � 1
non-parallel hyperplanes. Equivalently, it is the set of points (speci�ed by N-tuples) which
satisfy a set of N � 1 linearly independent linear equations.

` :

8
>>>>>><

>>>>>>:

`1;2 : x2 = m2x1 + b2

`2;3 : x3 = m3x2 + b3

� � �
` i � 1;i : x i = mi x i � 1 + bi

� � �
`N � 1;N : xN = mN xN � 1 + bN ;

(3.1)

Each equation contains a pair of adjacently labeled variables. In the x i � 1x i -plane the rela-
tion labeled ` i � 1;i is a line, and by our point $ l ine duality which we have already found
(eq. (3) in Chapter 1) it can be represented by a point �̀

i � 1;i .

�̀
i � 1;i = (

1
(1 � mi )

+ (i � 2) ;
bi

(1 � mi )
)

or in homogeneouscoordinates :

�̀
i � 1;i = (( i � 2)(1 � mi ) + 1; bi ; 1 � mi ): (3.2)

There are N � 1 such points for i = 2; : : : ; N which represent the line `.
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Base Variable Form

Another commonway of describinga line ` � RN is in terms of one, sometimescalled the
base, variable which after appropriate relabeling may be taken asx1. Then

` :

8
>>>>>><

>>>>>>:

`1;2 : x2 = m1
2x1 + b1

2

`1;3 : x3 = m1
3x1 + b1

3
� � �

`1;i : x i = m1
i x1 + b1

i

� � �
`1;N : xN = m1

N x1 + b1
N

; (3.3)

and the N � 1 points representing it are :

�̀
1;i = (i � 1; b1

i ; 1 � m1
i ) ; (3.4)

In tersection and non-in tersections of lines

It is convenient to illustrate the situation in 4-D using the base-variable representation of a
line:

x i = vi T + po;i = 1; 2; 3 : (3.5)

and shown in Fig. 3.7. There the intersection of two lines described by eq. (3.5), each
represented by 3 indexed points �̀

T i , is constructed. For T denoting time and x1 x2 x3 the
spacecoordinates of a particle moving with constant velocity ~V = (v1 v2 v3) and initial
position Po = (po;1 ; po;2 ; po;3) eq. (3.5), and equivalently it's 3 point representation, provide
the complete tra jectory information of the particle. The two sets of triple points �̀

T i and
�̀0

T i describe the tra jectories of two moving particles. The construction in Fig. 3.7 shows
that two such particles collide sincethey go through the samepoint in spaceat the same
time (i.e. there is a time-spaceintersection). Perhapssomeof the power of the k-coordinate
representation can be appreciatedfrom this simple example.

Y

X
1 1 1 1

�X 1
�X 2

�X 3
�X i � 1 �X i

�X N � 1

(i-2)

�X N

Figure 3.1: Spacingbetweenadjacent axesis 1 unit.
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`12 : x2 = m2x1 + b2
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Figure 3.2: Point on line in 5-D.
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X 2 X 3 X 4 X 5 X 6 X 7 X 8 X 9 X 10X 1

.

Figure 3.3: Line interval in 10-D { the thicker polygonal lines represent it's end-points. The
adjacent variablesrepresentation, consistingof nine properly indexedpoints, is obtained by
the sequential intersectionsof the polygonal lines' linear portions. Note that �̀

1;2 is to the
right of the X 2-axis and �̀

6;7 is an ideal point. The remaining points are in between the
corresponding pairs of axes.
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�̀1;2

�̀4;5

�̀2;3

�̀3;4
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Figure 3.4: Algorithm for constructing a pairwise linear relation, in this case�̀
25, given the

N � 1 points, �̀
i � 1;i , representing the line.
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Figure 3.7: Intersection, for the base-variable line description, of two lines in 4-D. This
provides the spaceand time coordinates of the place where two particles moving with
constant velocity collide.
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Figure 3.8: Non-intersectionbetweentwo lines in 4-D. Herethe minimum distanceis 20 and
occursat time = .9. Note the maximum gap on the �T-axis formed by the lines joining the
�̀ 's with the samesubscript. The polygonal linesrepresenting the points wherethe minimum
distanceoccursare shown and they have the samevalue of T.
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Figure 3.9: Non-intersectionbetweentwo lines in 4-D. Herethe minimum distanceis 20 and
occursat time = .9. Note the maximum gap on the �T-axis formed by the lines joining the
�̀ 's with the samesubscript. The polygonal linesrepresenting the points wherethe minimum
distanceoccursare shown and they have the samevalue of T.
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Figure 3.10: Non-intersection between two lines in 4-D. Here the minimum distance is 10
and occursat time = 1.6. Note the the diminishing maximum gap on the �T-axis formed by
the lines joining the �̀ 's with the samesubscript and comparewith Fig. 3.9. The polygonal
lines representing the points wherethe minimum distanceoccursare shown.
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Figure 3.11: Near intersection betweentwo lines in 4-D. Here the minimum distance is 1.5
and occursat time = 1.8. Note the the diminished maximum gap on the �T-axis formed by
the lines joining the �̀ 's with the samesubscript. The polygonal lines representing the points
wherethe minimum distanceoccursare shown.
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1; :::; x0
i ; :::; x0
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Figure 3.13: Con
icts, indicated by overlaping circles,within the next 5 minutes.

Figure 3.14: Con
ict resolutionwith parallel-o�set maneuvers. Threepairs of tangent circles.
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Chapter 4

Planes, p-
ats & Hyp erplanes

Vertical Line Represen tation

Figure 4.1: A plane � in R3 can be represented by two vertical lines and a polygonal line
representing oneof its points.

` :
�

`12 : x2 = m2x1 + b2

`23 : x3 = m3x2 + b3 :
(4.1)

each value of k determinesa(the rotated) plane and, in turn, the translated position �� 12:

�� 12 = (
m2

3 � 2m3 � k2

m2
3 � m3 + k2(m2 � 1)

; �
b2k2 + m3b3

m2
3 � m3 + k2(m2 � 1)

) (4.2)
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The above generalizeto RN wherea hyperplanebeing represented by N � 1 vertical lines.

Represen tation by Indexed Poin ts

The family of \Sup er-Planes" E

Weconsiderthe setof points P 2 RN whoserepresentation in k-coordscollapsesto a straight

line. They form a 2-D subspace(2-
at) That is, �P : y = mx + b and for each choice of

(m; b) the corresponding point is :

P = (md1+ b; md2+ b;: : : ; mdN + b) = m(d1; d2; : : : ; dN )+ b(1; : : : ; 1) : (4.3)

Therefore, the super-planes (abbr.sp) are on the line u containing the points

(0; 0; :::; 0); (1; 1; :::; 1). They can be described in terms of the axesspacingand for R3 the sp

are given by:

� s : (d3 � d2)x1 + (d1 � d3)x2 + (d2 � d1)x3 = 0 (4.4)

For the standard axesspacingusedso far, d1 = 0; d2 = 2; d3 = 2 the corresponding, called

the �rst, sp is :

� s
1 : x1 � 2x2 + x3 = 0 (4.5)

For a plane

� : c1x1 + c2x2 + c3x3 = co ; (4.6)

Figure 4.2: A set of coplanar points on a regular grid in R3 with the two vertical lines
pattern.
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�P2

�̀
23

�̀
12

�� 12

�Y 2
12

�Y 1
23

�Y 2
23�Y 1

12

Figure 4.3: A line ` on a plane � is represented by onepoint �� 12 in terms of the coordinates
(i.e. line in 2-D ! ) point in �Y1 and �Y2 which is collinear with the two point �̀

12 and �̀
23. This

is a consequenceof Desarguesprojective geometrytheorem.
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P1
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x1

x2

x3Y 2

Y 1

�

�X 1 �X 2
�X 3

�Y1
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�P1

�P2

�̀
23

�̀
12

�� 12
� �

�� � 12

�Y �
1

�Y �
2

Figure 4.4: Rotation of a plane about a line $ Translation of a point along a line.
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` � = � \ � s
1 :

8
<

:

` � 12 : x2 = � c1� c3
c2+2 c3

x1 + co
c2+2 c3

` � 23 : x3 = � 2c1+ c2
c3� c1

x2 + co
c3� c1

:
; (4.7)

Thesetwo points representing ` � coincidessince it is a line in a sp, and in homogeneous

coordinates

�� 123 = �̀
� 12 = �̀

� 23 = (c2 + 2c3; co; c1 + c2 + c3) : (4.8)

This is the �rst indexed point for � . To understand its signi�cance follow the next two

�gures. Next the axis �X 1 is translated to the position �X 0
1 oneunit to the right of the �X 3

providing the new axesspacingd1 = 4; d2 = 1; d3 = 2. The corresponding sp is

� s
10 : x1 + x2 � 2x3 = 0 : (4.9)

The x1 valuesof the coplanarpoints shown in Fig. 4.6 are transferedto the �X 10 { seeFig.

4.10{ and the construction in Fig. 4.7 is repeatedproviding the secondpoint

�� 2310 = �̀0
� 102

= �̀0
� 23 = (3c1 + c2 + 2c3; co; c1 + c2 + c3): (4.10)

shown Fig. 4.11. Thesetwo points represent the plane � sincefrom their coordinates the

coe�cien ts of eq. (4.6). Geometrically, we have determined the plane � by the two lines

d1

d2
di

dN

X

Y

�P

(d1; md1 + b)
(d2; md2 + b)

(di ; mdi + b)

(dN ; mdN + b)

�X 1 �X 2
�X i

�X N

Figure 4.5: Points in RN represented by lines.
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` � ; `0
� � � shown in Fig. 4.12. A planein R3 canbespeci�ed in terms of any two intersecting

lines it contains. The reasonfor choosing the lines in the sp is that in k-coords such lines

are represented by one rather than two points and there are further advantages. Note that

�� 2310 � �� 123 = (3c1; 0; 0) : (4.11)

The four Indexed Poin ts

The �X 2 and �X 3 axes are each translated to positions �X 0
2 and �X 0

3 3 units to the right

providing the third

� s
1020 : � 2x1 + x2 + x3 = 0 ; (4.12)

and similarly the fourth sp � s
102030. Two new points are constructedand shown in Fig. 4.13

As for the previous2 points

�
�� 31020 � �� 2310 = (3c2; 0; 0)
�� 31020 � �� 102030 = (3c3; 0; 0) :

(4.13)

It is easiychecked that the translations correspond to 120o rotations of the sp � s
1 about the

line u on the points (0; 0; 0); (1; 1; 1) with � 102030 coinciding with � s
1. To simplify notation the

index permutation is unimportant so that � 2310 = � 1023.

Figure 4.6: On the �rst 3 axesa set of polygonal lines representing a randomly sampledset
of points on a plane � � R3.
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Figure 4.7: Coplanarity! In k-coords joining the pairs of points representing lines on a plane
forms a pencil of lines on a point. The point shown is �� 123 in eq. (4.8). Review also the
3-point-collinearity for multidimensional lines (previous chapter).

Rotation of a Plane about a Line and the Dual Translation

Hyp erplanes and p-
ats in RN

Theorem A p-
at in RN given by eq. (??) is represented by the (N � p)p points :

�� i::: N 10:::(i � 1)0 = (
p+1X

k=1

dik cik ; co;
p+1X

k=1

cik ); (4.14)

where i = 1; : : : ; N � p, dik are the distancesspeci�ed by the standard axesspacingS10:::i 0

after the translation of the �X i to the �X 0
i axesand i 0 = 10; : : : p0 .

Collinearit y Prop ert y
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x

�X 1 �X 2
�X 3

�X 0
1

d2 = 1

d3 = 2

d0
1 = 3

y

Figure 4.8: The axesspacingfor the secondsuper-plane� s
10.

x

y

�x2�x1 �x3 �x0
1

d2 = 1

d0
1 = 3

d3 = 2

Figure 4.9: The axesspacingfor the secondsuper-plane� s
10.
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Y

X

�X 1 �X 2 �X 3
�X 0

1

c1

c2

c3

c1

c0
1

c0
2

c0
3

c0
1

�L

�̀e
0
23 �̀e

0
310

Figure 4.10: Transferring the valuesfrom the �X 1 to the �X 10-axis.

Figure 4.11: The plane � represented by two points
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u

x1

x2

x3

` �

`0
�

�

� s
1

� s
10

H

Figure 4.12: The intersectionsof a plane � with the two super-planes� s
1 and � s

10 are two
lines ` � ; `0

� which specify the plane and provide its representation. This is the equivalent of
the previous�gure but in cartesiancoordinates.

Figure 4.13: The plane � intersectedwith four super-planes. Each point represents one of
the intersection lines.
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y

x

�X 2
�X 3

�X 10 �X 20 �X 30

�� 10203�� 2310 �� 102030

3c1 3c2 3c3

�X 1

�H
�� 123c0

c1+ c2+ c3

Figure 4.14: The distancesbetween adjacent points are proportional to the coe�cien ts of
� : c1x1 + c2x2 + c3x3 = c0. The proportionalit y constant is the dimensionality of the space.
The plane'sequation can be read from the picture!

�L0�L00 �L

�H

�� 13

�� 2310

�� 12 �� 102 �� 1020

X

�� 2030

�� 31020

�� 203

�L000

�� 1030�� 103

�� 102030

�� 23

�� 123

Figure 4.15: Rotation of a 2-
at (plane) about a 1-
at(line) in R3 correspondsto a translation
of the points with 3 indiceson the horizontal line �H along the lines �L ; �L0 ; �L00; �L000joining
the points with 2 indices.
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�� 123

x

y

�� 103 13
�� 1030

�X 2
�X 1 �X 3

�X 0
1

�X 0
2

�X 0
3

p0
1 p0

1

p0
3 p0

3

p0
2 p0

2

�P00

�� 1020

�� 203�� 23

12

�H

23

�� 13

�� 12 �� 102

�P �P000

�� 2030

�P0

�� 2310 �� 102030 �� 31020

Figure 4.16: Rotation of a plane � 2 about a line � 1 such that c1 remainsconstant.
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�X 1 �X 2
�X 3

�X 4

x

y

�� 11
12

�� 11
23

�� 11
34

Figure 4.17: Recursive Construction in R4 { 1st step. A pair of points (polygonal lines)
determinesa line (1-
at) � 11 represented by the 3 constructedpoints �� 11

i;i � 1 ; i = 1; 2; 3; 4.

�X 1 �X 2 �X 3
�X 4

x

y

�� 11
12

�� 11
23

�� 11
34

�� 12
12

�� 12
34

�� 12
23

�� 21
123

�� 21
234

Figure 4.18: Recursive Construction in R4{ 2nd step. The 1-
at � 11 and another � 12 ,
represented by the 3 black points, determine a 2-
at (plane) � 21 represented by the two
points �� 21

123 , �� 21
234. Thesepoints are the intersectionsof the two polygonal lines joining the

points obtained from the previousstep representing 1-
ats.
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�X 1 �X 2 �X 3
�X 4

x

y

�� 11
12

�� 11
23

�� 11
34

�� 12
12

�� 12
34

�� 12
23

�� 21
123

�� 21
234

�� 31
1234�� 22

123
�� 22

234

Figure 4.19: Recursive Construction in R4 { 3rd step. Two 2-
ats, � 21 constructed above
and another � 22 represented by the 2 black points, determine a 3-
at � 31 . Pairs of points
representing the same2-
at are joined and their intersection is the point �� 31

1234. This is one
of the 3 points representing the 3-
at. The \debris" from the previousconstructions,points
with fewer than 4 indices,can be discarded.

�X 1 �X 2
�X 3

�X 4

y

�� 11
12

�� 11
23

�� 11
34

x

�X 10

�� 11
410

�� 31
1234

Figure 4.20: Recursive Construction in 4-D { 4th step. A new axis �X 10 is placed one unit
to the right of �X 3 and the x1 valuesare transfered to it from the �X 1 axis. Points are now
represented by new polygonal lines betweenthe �X 2 and �X 10 axesand oneof the points �� 11

410,
representing the 1-
at � 11 on the new triple of k-coords axes,is constructedas in 1st step.
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Figure 4.21: Polygonal lines on the �X 1 : : : �X 6 axesrepresenting randomly selectedpoints on
a 5-
at � 5 � R6 .

Figure 4.22: The �� 1i
12 ; �� 1i

23 portions of the 1-
ats � � 5 constructedfrom the polygonal lines
shown in Fig. 4.21,no evident pattern.
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Remarkably, the collinearity construction property canbe extendedto higher dimensions
enabling the recursive (on the dimensionality) construction of the representation of p-
ats
for 2 � p � N � 1. To achieve this someintermediate stepsare needed.In the ensuing,we
denoteby � s

10:::i 0 the \super-plane" constructedby translating the axes �X 1; : : : ; �X i to the new
positions �X 10; : : : ; �X i 0. Here di = N + i � 1 and for easyreferencethe partially translated
standard axesspacingis denotedby S10:::i 0.

The underpining of the construction algorithm for the point representation of a 2-
at
� 2 � R3, as we saw, is the collinearity property. Namely for any � 1 � � 2 the points
�� 1

12; �� 1
13; �� 1

23 are collinear with �� 123. The generalizationfor p-
ats is also true. Without
entering into the technical details yet for � (p� 2)1 ; � (p� 2)2 � � (p� 1) � RN , let �L1 and �L2 be
the lines determinedby the corresponding two points

�L1 : �� (p� 2)1
123:::(p� 1) ; �� (p� 2)1

23:::(p� 1)p ; �L2 : �� (p� 2)2
123:::(p� 1) ; �� (p� 2)2

23:::(p� 1)p :

Then

�� (p� 1)
123:::p = �L1 \ �L2 :

This is the basic recursive construction implied in the Representation Mapping stated
formally below. Though the notation looks cumbersomethe idea is not and to clarify it we
illustrate it for N = 4; p = 3 in Figs. 4.17through 4.20. Starting with the polygonal lines on
a 3-
at � 31 , �rst the points �� 1i

12; ; �� 1i
23 ; �� 1i

34, representing 1-
ats (lines) on � 3, are constructed
and joined to form polygonal lines having 3 vertices(the points) joined by two lines. From
the intersection of thesenew polygonal lines the points �� 2j

123; ; �� 2j
234, representing 2-
ats on

� 31 , are constructed. At any stage a point representing �� r , where the superscript is the

at's dimension,is obtainedby any pair of lines joining points representing a 
at �� r � 1 where
� r � 1 � � r .

Figure 4.23: The �� 2i
123 ; �� 2i

234 portions of the 2-
ats � � 5 constructedfrom the polygonal lines
joining �� 1i

12 ; �� 1i
23 ; �� 1i

34.
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Figure 4.24: The �� 3i
1234 ; �� 3i

2345, of the 3-
ats � � 5 constructed from the polygonal lines
joining �� 2i

123 ; �� 2i
234 ; �� 2i

345. Nothing yet ... but wait!

Figure 4.25: This is it! The �� 4i
12345 ; �� 4i

23456 of the 4-
ats � � 5 constructedfrom the polygonal
lines joining �� 3i

1234 ; �� 3i
2345 ; �� 3i

3456. This shows that the original points whoserepresentation is
in Fig. 4.21 are on a 5-
at in R6. The remaining points of the representation are obtained
in the sameway.
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Figure 4.26: The full representation of � 5. The coe�cien ts of its equation are still the
distancesbetweensequentially indexedpoints as in Fig. 4.14for R3.

Detecting Near Coplanarit y
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Chapter 5

Curv es

5.1 Poin t-Curv es and Line-Curv es

Recall the fundamental duality in the plane point-to-line correspondence:

P : (p1; p2; p3) � ! �P : [(p1 � p2); dp3; � dp1] ; (5.1)

where the distancebetween the x1 and x2 axesis d, and as usual, the triples within [ ... ]
and within ( ... ) denote line and point homogeneouscoordinates respectively. For regular
(i.e. in the Euclideanplane) points

P : (p1; p2; 1) � ! �P : [(p1 � p2); d; � dp1]:

The secondhalf of the duality is the line-to-point correspondence:

` : [a1; a2; a3] � ! �̀ : (da2; � a3; a1 + a2); (5.2)

wherethe ai ; i = 1; 2 are the coe�cien ts of the x i in the equationof ` and a3 is the constant.
When a2 6= 0, the slope of ` is m = � a1

a2
and the intercept b= � a3

a2
so :

` : [m; � 1; b] � ! �̀ : (d;b;1 � m): (5.3)

A way to obtain (5.2) from (5.1) is to �nd the envelope of all the lines �P which are the
imagesof the points P 2 `. Applied to each point of a smooth point-curve c results in the
line-curve �c shown in Fig. 5.1.

point � curve $ line � curve:

Poin t-Curv es from Poin t-Curv es

Early in the development (1980) of k-coords the direct construction of the a curve's image
as a poin t curv e was accomplishedas outlined below. Among bene�ts this when applied
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judiciously avoids over-plotting by the plethora of the lines which are the tangents at the
non-convexportions of the imagecurve.

Considera generalplanar curve c given by :

c : F (x1; x2) = 0; (5.4)

Substituting in eq. (5.3) yields the point-coordinates

x =
@F =@x2

(@F =@x1 + @F =@x2)
; y =

(x1@F =@x1 + x2@F =@x2)
(@F =@x1 + @F =@x2)

: (5.5)

There is an important special casewhen the original point-curve is given explicitly by x2 =
g(x1). Then eq. (5.5) reducesto :

x =
1

1 � g0(x1)
; y =

x2 + x1g0(x1)
1 � g0(x1)

(5.6)

Conic Transforms

T he treatment is particularly pleasing for the conic sectionswhich are described by the
quadratic function

F (x1; x2) = A1x1
2 + 2A4x1x2 + A2x2

2 + 2A5x1 + 2A6x2 + A3 =

= (x1; x2; 1)

0

@
A1 A4 A5

A4 A2 A6

A5 A6 A3

1

A

0

@
x1

x2

1

1

A ; (5.7)

where the type of conic is determined by the sign of the discriminant � = (A4
2 � A1A2).

The coe�cien t matrix is denotedby A and its determinant, which plays an important role

c

�c

P1

P2

p1

p2

�p1

�p2

�P1

�P2

Figure 5.1: Poin t-curv e and their line-curv e images.
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Figure 5.2: Cusp $ In
ection point duality is independent of the curves' orientation.

y

�Po

x

`o

x1

c : F (x1; x2) = 0

(0; xo
1)

(1; xo
2) bo

�̀
o = (xo; yo)

�c : f (x; y) = 0
Po = (xo

1; xo
2)

x2

d

�X 1
�X 2

Figure 5.3: Obtaining the point-curve �c directly from the point-curve c.

in the development, is

detA = A3(A1A2 � A4
2) � A1A6

2 � A2A5
2 + 2A4A5A6 : (5.8)

For conics,using the identit y that for a polynomial F of degreen F (x) = 0 ) r F � x =
r F � x � nF with the secondexpressionbeing linear, eq. (5.5) and becomes

x =
A4x1 + A2x2 + A6

[(A1 + A4)x1 + (A2 + A4)x2 + (A5 + A6)]
(5.9)

y = �
A5x1 + A6x2 + A3

[(A1 + A4)x1 + (A2 + A4)x2 + (A5 + A6)]
:
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Theseare Mobius1 transformations which form a group (seeany good book in modern Al-
gebra) [1]). This observation enablessubstantial simpli�cations of the earlier treatment of
conicsand their transforms (see[4] and [5]). The inverse, expressingx1 and x2 in terms of
x and y, is a Mobius transformation of the form

x1 =
a11x + a12y + a13

a31x + a32y + a33
; x2 =

a21x + a22y + a23

a31x + a32y + a33
; (5.10)

The result obtained is

f (x ; y) = (x y 1)a

0

@
x
y
1

1

A = 0 : (5.11)

The conclusionthen is that

conics in the xy � plane 7! conics in the x1x2 � plane

The speci�c result obtained is

f (x ; y) = (x y 1)a

0

@
x
y
1

1

A = 0 : (5.12)

with a is a 3x3 matrix whoseelements aregivenin terms of the coe�cien ts in eq. 5.7enabling
the classi�cation of the conic transforms into six cases.

Classi�cation of the Conic Transforms

1Also called linear rational transformations.
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Figure 5.4: Ellipses always map into hyperbolas. Each assymptoteis the image of a point
wherethe tangent hasslope 1.

Figure 5.5: A parabola whose ideal point does not have direction with slope 1 always
transformsto a hyperbola with a vertical assymptote.The other assymptoteis the imageof
the point wherethe parabola has tangent with slope 1.
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Figure 5.6: A parabola whoseideal point hasdirection with slope 1 transformsto a parabola
- self-dual.

Figure 5.7: Hyperbola to ellipse{ dual of caseshown in Fig. 5.4
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Figure 5.8: Hyperbola to parabola. This occurswhen oneof the assymptoteshas slope 1 {
dual of caseshown in Fig. 5.5

.

Figure 5.9: Hyperbola to hyperpola { self-dualcase.
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Transforms of Algebraic Curv es
Conic transforms are studied for two reasons.For one, it is the easeof useof Mobius trans-
formations which is completely general for Quadrics, the surfacesprescribed by quadratic
equations,in any dimension. For another they are a model for the far more generalcurves,
regionsand their rami�cations in the next section. A few words are in order on the trans-
forms of algebraiccurves in general. In Algebraic Geometry the topic of duals of algebraic
curveshasbeenstudiedextensively and solvedexplicitly over a century agoby Julius Pl•ucker
with the conclusionsapplying alsoin our casewhich is a speci�c kind of duality. The results
have beencodi�ed and are known as the Pl•ucker formulae apply to algebraic curves with
restricted kinds of singular points. Speci�cally, the Pl•ucker class formula says that for a
curve c of degreen; n � 2 with s cuspsand d (double)crossing-points the image �c is also
an algebraiccurve of degreen� = n(n � 1) � 2d � 3s (see[3], [6], [14] and [7] for the more
generalalgebraicmethods).

Unlessthe curve is given explicitly, and its transform is easily obtained via eq. (5.6),
there is no sensiblereasonto work with the image of algebraic curves in k-coords. The
price in �nding the polynomial equation of raised degreeand then computing the curve is
too steepwith no bene�t. The samecurve can be computed numerically and directly from
eq. 5.5. Alternativ ely one can work with approximations as is doneroutinely in Geometric
Modeling and other applications. The image of portions algebraiccurve and more general
curvescan be understood qualitatively well with the help of the following considerations.

Figure 5.10: Gconics - three types of sections: (left) bounded convex set bc, (right) un-
boundedconvex set uc and (middle) hyperbola-like gh regions.
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Figure 5.11: A boundedconvex set bc always transforms to a gh (generalizedhyperbola) {
this is the generalizationof the caseshown in Fig. 5.4 .

Figure 5.12: An unboundedconvex set uc whoseideal points do not have slope 1 transforms
to a gh (generalizedhyperbola). This is the generalizationof the caseshown in Fig. 5.5.

Convex Sets and their Relativ es

Consider a double-cone,as shown in Fig. 5.10, whosebaseis a boundedconvex set rather
than a circle. The three type of sectionsshown are generalizationsof the conics and are
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Figure 5.13: Unboundedconvex set uc having ideal point with slope 1 transforms to a uc {
self-dualcase.This is the generalizationof the caseshown in Fig. 5.6.

Figure 5.14: A gh whosesupporting lines have slope m 2 [m1; m2] wherethe m1 < 1 < m2

are the assymptotes'slopestransformsto a boundedconvex bc set. This is the generalization
of the conic caseshown in Fig. 5.7.

conveniently called gconics2. They are either a :

bounded convex set is abbreviatedby bc, or an

unbounded convex set is denotedby uc containing a non-empty set of ideal points whose
slope m is in an interval m 2 [m1 ; m2], or a

2The corresponding regionshave beenpreviously referred to as estars, pstars and hstars [9], [12].
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Figure 5.15: A ghwith 1 62[m1 ; m2] , wherethe mi are the assymptotes'slopes,transforms
to a gh { Self-dualcase.This is the generalizationof the caseshown in Fig. 5.9.

u-ps (6.22  30 May 1993): 

u-ps CVXUNION ( GSIZE 6.0 8.0 ROTATE 0 FILL COLOR REPLACE BOTOPTION 

ACHATTER at YKTVMH  05/01/94  18:57:45

Figure 5.16: The Convex Union (also called \Convex Merge") of bcs corresponds to the
Outer Union of their images(ghs).

generalized hyp erb ola denoted by gh consisting of two full(not segments) lines `u ; ` ` ,
called assymptotestwo in�nite chains, convex-upward chain cu above both assymp-
totes, and another convex-downward chain c` below both assymptotes.
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Figure 5.17: Inner intersectionand intersectionsare dual.
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Chapter 6

Appro ximate Planes & Flats

Motiv ation and a Topology for Pro ximit y

I n order to apply the results of the representation of 
ats their behavior in the presenceof
errors needsto be understood. While there are many sourcesof errors in the applications,

Figure 6.1: Pair of point clustersrepresenting closeplanes. Note the hexagonalpatterns.

from our viewpoint, it su�ces to considerthe accumulated errors in terms of the resulting
variations ci 2 [c�

i ; c+
i ] in the coe�cien ts ci of the linear equations. This generatesa whole

family F of \close" 
ats. Even in R3 the direct visualization of such a family of closeplanes
is challenging. Let us examinethe family of \close" planes

f � : c1x1 + c2x2 + c3x3 = c0 ; ci 2 [c�
i ; c+

i ] ; c�
i < c+

i g :

Computing the two point representation in k-coords of someof theseplaneswe seein Fig.
6.1 the corresponding pair of point clusters. The outline of two polygonal patterns can be
discerned. Not only is the family of planes\visualizable" but also the variations in several
directions.
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x

y

�P1
�

P1
+

P2
+

�P2
+

�P2
�

(� ; +)(+ ; +) �P1
+ �̀

(+ ; +)

(+ ; � )

(� ; � )

Figure 6.2: On the left is a regioncoveredby lines\close" to ` and on the right are the points
in k-coords representing the lines in the region. This is an instanceof a gh (a \generalized
hyperbola") on the left ! bc which here is a boundedconvex quadrilateral.

Pro ximit y of Lines and Line Neigh borho ods

In R2 considerthe collection of lines

F = f ` j ` : c1x1 + c2x2 = 1 ; c1; c2 2 Rg; :

and the neighborhood

N L = f ` j ` : c1x1 + c2x2 = 1 ; ci 2 [c�
i ; c+

i ] i = 1; 2 g: (6.1)

The extremelines obtained by the 4 di�erent combinations are :
8
>><

>>:

(� ; � ) : c�
1 x1 + c�

2 x2 = 1
(� ; +) : c�

1 x1 + c+
2 x2 = 1

(+ ; � ) : c+
1 x1 + c�

2 x2 = 1
(+ ; +) : c+

1 x1 + c+
2 x2 = 1

(6.2)

An exampleis shown on the left part of Fig. 6.2 where the extreme lines in eq. (6.2) are
constructedfrom the points:

P+
1 =

�
1
c+

1
; 0

�
; P �

1 =
�

1
c�

1
; 0

�
; P+

2 =
�

0;
1
c+

2

�
; P �

2 =
�

0;
1
c�

2

�
:

Checking the situation in jj -coords, on the right-part of Fig. 6.2, the lines in the unbounded
region RN are transformed into a simple convexquadrilateral N L.
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�X 2�X 1

N L1

RN L1

RN L2

RN L3

RN L4

N L4

N L3

N L2

Figure 6.3: The regionsRi ; i = 1; 2; 3; 4 covered by 4 families of lines in orthogonal and
their imagesN L i in jj coordinates.

We enlargethe classof lines in N L replacing the 1 by c0 and allowing it to vary within
an interval

N L = f ` j ` : c1x1 + c2x2 = c0 ; ci 2 [c�
i ; c+

i ] i = 0; 1; 2 g: (6.3)

Each such line ` is represented by the point

�̀ = (
c2

c1 + c2
;

c0

c1 + c2
) (6.4)

The resulting N L is now a hexagon with the left-most and right-
most edges vertical. The vertices going counter-clockwise are
(� ; + ; � ); (+ ; + ; � ); (+ ; � ; � ); (+ ; � ; +) ; (� ; � ; +) ; (� ; + ; +). For clarity the three
quadrilaterals corresponding to c�

0 ; c+
0 and c0 2 [c�

0 ; c+
0 ] are also shown separately in the

upper portion of Fig. ?? with fewer details.

The generalizationto RN is direct with a family of closelinesbeing represented by N � 1
regions and comesout as a special casein what follows. For earlier treatments of line-
neighborhoods and topologiesfor 
ats in jj -coords see[10] and [2]. The exposition here is
adapted from [13].

61



Pro ximit y of Hyp erplanes

Form ulation of the Problem in RN

I n R3 for the plane
� : c1x1 + c2x2 + c3x3 = c0 ; (6.5)

�� 1023 =
�

c2 + 2c3 + 3c1

c1 + c2 + c3
;

c0

c1 + c2 + c3

�
= (1; 0) +

�
c3 + 2c1

c1 + c2 + c3
;

c0

c1 + c2 + c3

�
(6.6)

an observation showing that �� 10 = �� 1023 can be obtained from

�� 00 = �� 123 =
�

c2 + 2c3

c1 + c2 + c3
;

c0

c1 + c2 + c3

�

by a shift and the counter-clockwise cyclic permutation c1 ! c3 ; c3 ! c2 ; c2 ! c1. This

for co 2 [c�
o ; c+

o ]

for c+
o

x

y

�X 1
�X 2

for c�
o

(+ ; + ; +)

(� ; � ; � )
(+ ; + ; � )

(� ; � ; +)

c+
o

c�
1

c�
o

c�
1

c+
o

c+
1

c�
o

c+
1

c�
o

c+
2

c+
o

c+
2

c�
o

c�
2

c+
o

c�
2

(� ; + ; +)

(+ ; � ; +)

(+ ; � ; � )
(� ; + ; � )

Figure 6.4: Construction of the neighborhood N L for N L = f ` j ` : c1x1 + c2x2 = c0 ; ci 2
[c�

i ; c+
i ] i = 0; 1; 2 g. The \exploded" view also shows the quadrilaterals N L � for c0 =

c�
0 and N L + and c0 = c+

0 whosevertices are marked with black and blank oval vertices
respectively. The complete �N L is a hexagonhaving two vertical edges,3 verticesfrom �N L �

{ the lowest ones,and three verticesfrom �N L + .
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combinatorial relation allows for a reduction in the number of indexed points that needto
be considered.The analogousrelations hold for RN .

We proceednow with the study of the the classof all hyperplanes

F = f � j � : c1x1 + c2x2 + ::: + cN xN = 1 ; ci 2 R f or i = 1; 2; :::; N g;

Note that for convenience,the valueof c0 = 1 is usedand is adjustedlater to arbitrary values
as for line neighborhoods. In the study of the N � 1 regionscomposingN H , in view of the
previousreduction, it su�ces to investigatethe region 
 = N H 00 containing the points �� 00.
Theseare the function valuesof

f N : RN 7! R2

in x; y coordinates,
f N (c) = (x(c) ; y(c)) =

 P N
j =1 (j � 1)cj

S
;

1
S

!

; (6.7)

reverting to homogeneouscoordinates to accomodate ideal points. The subscript \0 0" is
dropped when the context is clear. The cj rangein the N -dimensional\b ox"

B = [c�
1 ; c+

1 ] � ::: � [c�
N ; c+

N ] � RN :

The stageis now set for the task ahead: to understandthe properties of f N , its action on B

B
f N7�! 
 = f N (B ) � P2 ,

and the structure of 
 representing the family of hyperplanesin N .
The region in RN coveredby \close" hyperplanesis a complexN -dimensionalgh \gener-

alized hyperbola") whoseimagein k-coords consistsof N � 1 regionsin R2. As will be seen
theseare also bc, uc, gh. From theseregionsthe properties of \close" hyperplanescan be
ascertainedand visualizedwithout lossof information.

The Region 


Comp onents and Structure of 


Lemma 6.0.1 
 = \ N
k=1 
 k . Either

(a) 
 is a convexset strictly aboveor below the x-axis, or
(b) 
 consistsof two convexregions one aboveand the other below the x-axis.

In the secondcase,it will be seen,that there exists a combination of the cj for which
S(c) = 0 resulting in 
 being a gh. For the construction of 
 we pick our cue from Fig.
?? and investigate the intersections �P k

m \ �P k+1
m and �P k

M \ �P k+1
M starting with the relations

betweenthe successive Ck
m and Ck

M , it turns out : that for
�

Ak = (c+
1 ; c+

2 ; : : : ; c+
k� 1; c�

k ; c�
k+1 ; : : : ; c�

N ) ;
Bk = (c�

1 ; c�
2 ; : : : ; c�

k� 1; c+
k ; c+

k+1 ; : : : ; c+
N ) ;

with
A1 = (c�

1 ; : : : ; c�
N ) = BN ;

B1 = (c+
1 ; : : : ; c+

N ) = AN ;

�
(6.8)

63



(
C(k� 1)

m = Ck
m + S(Ak) ;

C(k� 1)
M = Ck

M + S(Bk) :
(6.9)

These2N verticesare characterizedby a singlechangeof sign in the superscriptsat the kth
position. The successive line intersections �P k

m \ �P (k� 1)
m are

Ck
my + (k � 1) = C(k� 1)

m y + (k � 2) ) y =
1

S(Ak)
; (6.10)

and
�P1

m \ �PN
M = f (A1) = f (BN ) ; �PN

m \ �P1
M = f (B1) = f (AN ) : (6.11)

If there is a combination of the coe�cien ts c such that S(c) = c1 + c2 + : : : + cN = 0,
while these ck 2 [c�

k ; c+
k ], then y(Ak) and y(Ak+1 ) have di�erent signs so that the above

monotonicitiesbecome

Construction of 


We have beencarefully skirting around the prospect of the sumS(c) =
P N

j =1 cj = 0 for some

c 2 B and this is dealt with now. In the c 2 RN the coe�cien t space� c :
P N

j =1 cj = 0 is a

x1

x3

x2

` �

�X 1
�X 2 �X 3

x

y

�̀
� = �� 123

P3

P1

P2

�P2

�P1

�P3� s
1

�

Figure 6.5: A plane � , its intersection` � = �� 123 with the �rst super-plane� s
1 and the points

P k = ` � \ x i x j -plane for k 6= i; j .
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x xx

y y y

k-1k-1 k-1

1=Ck
m > 0

1=Ck
m < 0

1=Ck
M < 0

1=Ck
M > 0

1=Ck
m > 0

1=Ck
M < 0

Figure 6.6: \F an" regions
 k swept by the rotations of �P k about the point (k � 1; 0).

hyperplaneand its relative position to the box B has important rami�cations with respect
to the corresponding 
. So for the determination of 
 the procedureis to �rst check

Theorem 6.0.2 The region 
 is 2N -agon aboveor below (but not intersecting) the x-axis,
which is

1. bc if � c \ B = ; ,

2. uc if � c \ B = f A1g or � c \ B = f B1g ,

3. gh if � c intersects B at more than oneedge,and hasa vertical assympote if in addition
� c contains a vertex of B .
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1 k � 10 N � 1

f N (B1)

f N (A1)

f N (A2)

f N (A3)

f N (a1)

f N (Bk+1 )

f N (Bk)
f N (bk)

f N (A4)

f N (Ak+1 )

f N (Ak)

f N (B2)

f N (ak)




Figure 6.7: Construction of 
. The kth region 
 k contributes the vertices f N (Ak); f N (Bk)
to @
, and together with the region 
 k+1 the vertices f N (Ak+1 ); f N (Bk+1 ) and edges
f N (ak); f N (bk) ashighlighted.

c2

c3

c1

A1 = (� ; � ; � )

A2 = (+ ; � ; � ) A3 = (+ ; + ; � )

B1 = (+ ; + ; +)

B2 = (� ; + ; +)B3 = (� ; � ; +)

b1

a3

a2

a1

b2

b3

Figure 6.8: 3D-Box B in the spaceof coe�cien ts showing the vertices and edges3 each
Ak ; Bk ; ak ; bk alongthe path P. The notation � indicatesthe signof c�

k at the kth component.
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c+
1

c�
1 c�

2

c�
3 c�

k� 1

c+
k� 1

c�
k+1

c+
3c+

2
c+

k
c+

k+1

c�
k

c�
N

c+
N

c�
N � 1

c+
N � 1

ck

�C1
�C3 �C2 �Ck� 1

�Ck
�Ck+1

�CN � 1
�CN

Figure 6.9: Image �B of domain B, which is an N-dimensionalbox in the coe�cien t space
c1 � c2 � : : : � cN . The dotted lines are the polygonal lines representing the box's vertices.
The solid line shows vertex �Ak and the dashedportion (together with the remaining solid
line) shows one of the points on the edge�ak the arrow on the �Ck axis is the direction of
traversal from c+

k ! c�
k . Each full traversal of ck 2 [c�

k ; c+
k ] corresponds to an edgeak , one

of the N edgeson the vertex Ak . The full path P can be traced in this manner.

A3 = (+ ; + ; � )

B2 = (� ; + ; +)B3 = (� ; � ; +)

a3

(� 1; � 1; � 1)

c1

c3

c2

b3

A2 = (+ ; � ; � )

b1

b2

� c

� c

A1 = (� ; � ; � )
a2

a1

B1 = (+ ; + ; +)

� c

Figure 6.10: The B in the 3-D spaceof coe�cien ts c1; c2; c3 and its positionswith respect to
the plane � c : c1 + c2 + c3 = 0. Namely � c \ B = ; , or if � c \ B 6= ; � c is a supporting plane
at either vertex A1 or B1 or � c intersectstwo edgesof the path P.
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0

f N (B1)

f N (AN � 1)

f N (AN � 2)

f N (BN � 1)

N � 1

f N (A2)

f N (A3)
f N (A4)

f N (A1)

f N (B3)

f N (B4)

f N (B2)

f N (BN � 2)




1

Figure 6.11: 
 can be a uc. Here f N (B1) is an ideal point.




0

r � 1k � 1




1

f N (Ak)

N � 1

f N (B2)f N (AN � 1)

f N (BN � 1) f N (A2)

f N (A1)

f N (B r � 1)
f N (Ak+1 )

f N (B r )

f N (Ak� 1)

f N (B1)

Figure 6.12: 
 can be a gh.
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a1 a2 ak

. . .. . .
aN � 2

bN

b1

aN � 1
bN � 1 . . . . . .br br � 1

�

� c
+

�
+

+
�

� c


 bc

� c


 uc

a1 a2 ak

. . .. . .
aN � 2

bN

b1

aN � 1
bN � 1 . . . . . .

� c

br � 1br

+

�
� c

�
+


 gh

a1 a2 ak

. . .. . .
aN � 2

bN

b1

aN � 1
bN � 1 . . . . . .br br � 1� c \ B = ;

A2 A3 Ak AN � 1

BN � 1 B r B r � 1 B2

A1 = BN

B1 = AN

A2 A3 AN � 1

BN � 1 B r � 1 B2

A1 = BN

B1 = ANB r

Ak

A2 A3 Ak AN � 1

BN � 1 B r B r � 1 B2 B1 = AN

A1 = BN

Figure 6.13: The intersection of the hyperplane � c with the path P � B determinesthe
type of the region 
. When � c \ B = ; (top) 
 is a bc (boundedconvex) 2N-agonas in Fig.
6.7, otherwisea uc (unboundedconvex) when � c is a supporting hyperplaneto B at either
vertex A1 or B1 (middle) Fig. 6.11, or as in the bottom part a gh (generalizedhyperbola)
Fig. 6.12when � c intersectsmore than one segment B . In addition, if � c cuts through one
of the verticesV then �V is an ideal point and is a vertical assymptoteof 
. (Exercise??).

c1

c3

c3

c1

c2

c2

A1 = (� ; � ; � )

A2 = (+ ; � ; � ) A3 = (+ ; + ; � )

B1 = (+ ; + ; +)

B2 = (� ; + ; +)B3 = (� ; � ; +)

Figure 6.14: Pathway for the computation of @
 for N = 3. The label ci indicates the
only co�cien t varrying along the edge. Starting from A1 = (� ; � ; � ) the next vertex
A2 = (+ ; � ; � ) is found by the variation of c1 betweenits extremevalues. In the sameway
all the remaining verticesare found.
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0 0:5 1 21:5 3:02:5

0

0:2

0:4

0:6

0:8

1

(+ ; � ; � )(+ ; � ; � )

(+ ; � ; +)(� ; + ; � )

(� ; � ; � )

(� ; � ; +)

(� ; + ; +)

(� ; � ; � )

(� ; + ; +)

(+ ; + ; +) (+ ; + ; +)

(+ ; + ; � )

Figure 6.15: The hexagonalregions
 = N H 00 (on the left) and on the right N H 10 for the
family of planeswith c1 2 [1=3; 1:5]; c2 2 [1=3; 2:5]; c3 2 [1=3; 1]. Comparethis picture with
Fig. 6.1 at the beginningof the chapter.

70



0 0:5 1 21:5 3:02:5

0

0:2

0:4

0:6

0:8

1 (� ; � ; � )

(+ ; + ; +)

(+ ; � ; � )

(� ; + ; � )
(� ; + ; +)

3:5 4:0 4:5 5:0

(� ; � ; � )

(� ; � ; +)

(+ ; + ; +)

(+ ; � ; +) (+ ; � ; +)
(� ; + ; � )

(� ; � ; � )

(+ ; � ; � )

(+ ; + ; +)

(+ ; + ; � )

(� ; � ; +)

(+ ; + ; � )

(+ ; + ; +)

(� ; + ; +)(� ; + ; +) (+ ; + ; � )

(� ; � ; +)

(� ; � ; � )

(+ ; � ; � )

Figure 6.16: The four hexagonalregionsfor the family of planeswith c1 2 [1=3; 1:5]; c2 2
[1=3; 2:5]; c3 2 [1=3; 1]. Note that the last regionN H 30 is identical to the �rst N H 00 translated
3 units to the right. Note the overlap in the last two regionswhich suggeststhat there may
be planes � in this family with c3 = 0 (when �� 20 = �� 30) which is not possiblefrom the
ck intervals' de�nition. However, there can not be points �� 20 = �� 30 2 N H 20 \ N H 30 with
�� 00 2 N H 00 and �� 10 2 N H 10. For example,the two 
 with vertical arrows are the locations
of �� 00; �� 30 in N H 00 and N H 30 for (� ; + ; � ) while the � with horizontal arrow is the location
of (+ ; � ; � ) in N H 20.

0 0:5 1 21:5 3:02:5

0

0:2

0:4

0:6

0:8

1

(+ ; � ; � ; � )

(+ ; + ; � ; � )

(� ; + ; � ; � )

(+ ; � ; � ; � )

(� ; + ; � ; � )

(+ ; + ; � ; � )

(� ; + ; + ; +)(� ; + ; + ; +)

(� ; + ; � ; +)

(� ; + ; + ; � )
(� ; � ; + ; +)

(+ ; � ; + ; � )

(� ; � ; + ; � )

(+ ; � ; � ; +)

(� ; � ; + ; +)

(� ; � ; � ; +)

Figure 6.17: The hexagonalregions 
 = N H 00 (on the left) and on the right N H 10 for
the family of planeswith c0 2 [:85; 1:15]; c1 2 [1=3; 1:5]; c2 2 [1=3; 2:5]; c3 2 [1=3; 1]. The
supersciptof c0 is the �rst entry of the quadruples(� ; :; :; :; ) designatingthe vertices. Vertices
with c+

0 are marked by 
 and thosefor c�
0 with ellipses.

71



72



Figure 7.1: (a) Square(b) Cube in R3 (c) Hypercube in R5 { all edgeshave unit length

Chapter 7

Surfaces in RN

� : c1x1 + c2x2 + c3x3 = c0 : (7.1)

Denoting the coe�cien ts by c = (c1; c2; c3) and u = (1; 1; 1), the points representing the
plane are given in the convenient inner-product (denotedby \ �") form :

�� = (c � d i
3 ; c0 ; c � u) = (c � d i

3 ; c0 ; c1 + c2 + c3 ) : (7.2)
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Speci�cally, the �rst coordinates of �� for the index spacingsdue to the four standard axes
triples usedare : 8

>><

>>:

c � d0 = c � (0; 1; 2) = c2 + 2c3

c � d1 = c � (3; 1; 2) = 3c1 + c2 + 2c3

c � d2 = c � (3; 4; 2) = 3c1 + 4c2 + 2c3

c � d3 = c � (3; 4; 5) = 3c1 + 4c2 + 5c3

(7.3)

The gradient vector of F, r F = ( @F
@x1

; @F
@x2

; @F
@x3

)
�
�
P

, at the point P is normal to the
surface� at P ) the tangent plane � of � at the point P0(t0; s0) = (x0

1 ; x0
2 ; x0

3) = (x0)
is given by

� (s; t) : r F � (x � x0) =
3X

i =1

(x i � x0
i )

@F
@x i

(x0
1; x0

2; x0
3) = 0 :

The points representing � (s; t), obtained from eq. (7.2) are :

�� i 0(s; t) = (r F � d i ; r F � (x0) ; r F � u) ; i = 0; 1: (7.4)

Stated explicitly the point 7! pair-of-points mapping is

x 2 � 7! � 7! ( �� 00; �� 10) = ( �� 123 ; �� 1023) = ((x; y); (x0; y)) ; (7.5)

whereby x0 we denotethe x-coordinate of �� 1023 the y being the samefor both points. With

�
�� 2310

�� 123

x

�X 1 �X 2 �X 3

y

x1

x3

x2

�

P

Figure 7.2: A surface� 2 E is represented by two planar regions �� 123 ; �� 2310 consistingof
pairs of points representing its tangent planes.
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�

tangent planes

�

� s
00

� s
00

�

R

` �

P

` �

�� 1023

�� 1023
�P

�� 123�� 123

�� 123 �� 1023

�

Figure 7.3: Formation of boundary contour

the notation Fi = @F=@x i 8
>>>><

>>>>:

x = F2+2 F3
F1+ F2+ F3

;

y = x1F1+ x2F2+ x3F3
F1+ F2+ F3

;

x0 = 3F1+ F2+2 F3
F1+ F2+ F3

:

(7.6)

Thesetransformations are the direct extensionof the 2-D point $ point curve transforma-
tions derived in Chapter ??. A word of caution, when the inter-axesdistance d 6= 1, the
right-hand-sidesof x and x0 above needto be multiplied by d and 2d respectively (see(5.5)
in Chapter ??).

The generalizationto the hyper-surfacesE of RN is direct. The image of the tangent
hyperplane at a point P 2 � 2 E consistsof N � 1 points determined from eq. (7.4) by
using the appropriate axesspacingd i

N ; i = 0; : : : ; N � 2. The resulting transformation, the
N-D extensionof eq. (7.6) with N terms in the numerator and denominator,determinesthe
point N � 1-tuples mapping surface� 2 E into �� consistingof (N � 1) planar regions

7.1 Boundary Con tours

Lemma 7.1.1 (Boundary of �� in RN ) For a � � RN , @�� is composed of N � 1 curveswhich
are the imagesof the intersections of � with the �rst N � 1 superplanes.

An algebraic surface is one described by a polynomial equation providing an important
special caseof Lemma 7.1.1.
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Corollary 7.1.2 (Boundary of an algebraic surface) The boundary �� of an algebraic surface
� of degree n is composed of N � 1 algebraic curveseach of degree n(n � 1) or less.

The corresponding known result in Algebraic Geometry is that the dual of a non-singular
algebraicsurfaceof degreen hasdegreen(n � 1)(N � 1) [?], [?]. Here the boundary represen-
tations can be found with the aid of Pl•ucker's resultspresented in Section?? in Chapter ??.
For F in eq. (7.6) a quadratic polynomial the corresponding surfaceis calledquadric and in
R3

� : F (x1; x2; x3) = (x1; x2; x3; 1)A (x1; x2; x3; 1)T ; (7.7)

A being a symmetric 4 � 4 matrix for R3 and (N + 1) � (N + 1) for RN .

Corollary 7.1.3 (Boundary of �� for � a quadric) A quadric surface � � RN is represented
by N � 1 planar regions with conic boundaries.

This is the direct extensionfrom conics in 2-D to quadrics in N-D and as for conicstheir
type dependson their orientation as pointed out next.

Theorem 7.1.4 (Representationof �� in RN ) A smooth hypersurface � � RN can be repre-
sented byN � 1 regions�� i;i +1 � P2 ; i = 1; : : : ; N � 1 with @�� i;i +1 = �c(i 0� 1);i 0 = (� \ � N s

i 0 )(i 0� 1);i 0.

Figure 7.4: Intersectionof a surface� (here a hyperboloid of onesheet)with the two super-
planes� s

00; � s
10. The points of the boundary @�� are the imagesof the tangent planesat the

points of two curves� \ � s
00 and � \ � s

10.
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To clarify the notation, � N s
i 0 is the i + 1 sp (recall that the �rst one is also denoted by

� N s
00 ). The image of the space curve � N s

i 0 \ � is the image of only one projection; we
chose(� N s

i 0 \ � )(i 0� 1);i 0 corresponding to the adjacent axes �X i 0� 1; �X i 0 for which d = 1 with
the convention that for i 0 = 1; �X (i 0� 1) = �X N . A horizontal translation by N + i � 1 units to
the left as shown in Fig. ?? is neededto obtain the correct x coordinate. For an object, a
point P for example,the notation �Pi 0 refers to the representation of P with respect to the
N coordinatesaxesafter the i th shift.

For R3 the preferred projections are (� s
1 \ � )12 ; (� s

10 \ � )103 and for R4, (� 4s
1 \ � )12 ,

(� 4s
10 \ � )104 ; (� 4s

10 \ � )1020 and so on.

7.2 Dev elopable Surfaces

T he spherecan not be cut and then 
attened undistorted. Motivated by map-making,sur-
facesweresought whoseshapeis \close" to sphericaland canbeunrolled into a planewithout
streching or contracting. Euler �rst consideredthis problem, then starting in 1771Monge
mademajor contributions on the subject of developablesurfaces.Mongepointed out poten-
tial applicationsespecially to architecture leadingperhapsto someof the modern contoured
architectural marvels. Gaussand others followed with the development of the di�erential
geometryof more genenalsurfaces.Developablesurfaces(\developables"for short), are the
classD � E which are the envelope of a oneparameterfamily of planes,serve asan excellent
starting point for our study of surfacerepresentation. Finding their image, matching and
reconstruction algorithms is straight-forward and the results o�er crucial guideson coping
with the more generalrepresentation problems. The pioneeringwork, and the basisfor the
exposition here, on their representation and that of ruled surfacesis due to C.K.Hung [8],
[11].

Theorem 7.2.1 (C.K.Hung { DevelopableSurfaces) { Let a surface � 2 D with tangent
planesgiven by eq. (??), and a neighborhood U � I t � R where the two conditions :

dx(t)
dt

=
@
@t

�
c(t) � d i

c(t) � u

�
= 0 ;

dy(t)
dt

=
@
@t

�
c0(t)

c(t) � u

�
= 0 ; (7.8)

are not simultaneouslysatis�ed for 8t 2 U. Then the setof points f �� (t) i 0 jt 2 Ug representing
the tangent planeseq. (??) are curves.

Theorem 7.2.2 A developable with a well matched representation is (piecewise) recon-
structable.

7.2.1 Classes of Dev elopables

Corollary 7.2.3 (C.K.Hung { Cylinders) Elliptic cylinders in R3 are represented by a pair
of hyperbolas.
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�� 123

�� 2310

�� 2310

�� 123

�� 2310�� 123�H

Figure 7.5: The pair of points �� 123 ; �� 2310 represents an unambiguous plane. The �� and ��
points are a1 ambiguousin the �rst sense.

x

y

�� 1023�� 123

�P �Q

�r12

�r23

�� 1023�� 123

�X 3 �X 0
1

�X 2�X 1

�Q00

Figure 7.6: Reconstructinga developable.The ruling r is represented by �r 23 = �P \ �Q shown
by a 
 , and �r 12 = �P \ �Q00 shown by a � , where �Q00 is the 1; 2 part of the representation
of Q with respect to the coordinate axes �X 1; �X 2; �X 3.

There are advantagesin describingsurfacesin vector notation which is due to the math-
ematical physicist W.J. Gibbs1. A circular cylinder is given by :

x(t; v) = b + r (ŝ1cost+ ŝ2sint ) + vŝ ; (7.9)

where ŝ is the unit vector in the axis direction and two other unit vectors such that s =
ŝ1 � ŝ2 which are implicitly given in terms of the basicunit vectors êi ; i = 1; 2; 3. The two
parametersv; t are real numbers with 0 � t � 2� . The constant vector b and the cylinder's

1He was an early advocate for visualization in sciencewith his �rst two papers in 1873 : \Graphical
Methods in the Thermodynamics of Fluids" and \A Method of Geometrical Representation of the Thermo-
dynamics Properties of Substancesby Means of Surfaces".
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axis of symmetry s sharea point which is the center of a circle of radius r and a point on
its circumferenceis given by the vector p = r (ŝ1cost+ ŝ2sint ). This vector is normal to the
tangent plane

In Fig. 7.9 a generalcylinder, with a ruling formed of cuspshas two representing curves
each with an in
ection point, remind usof the developable$ curveduality. The representing
curvesseenin Fig. 7.10indicate that a planetangent to two rulings (i.e. bitangent) existsand
is represented by crossingpoints one on each curve further illustrating the aforementioned
duality. By the way this alsopoints out that the crossingpoint and cuspsin the representing
curves in Figs. ?? and ?? correspond to bitangent planesand rulings which are the loci of
in
ection points in the developables.

Cones

A developableall of whoserulings intersect on a single characteristic point, eq. (??), is a
cone.

Corollary 7.2.4 (Cones { C.K.Hung ) Circular Conesin R3 are represented by a pair of
conic curves.

Number of tangent planesparallel to u Represented by a pair of
0 ellipses
1 parabolas
2 hyperbolas

Generaldevelopablesurfacescan be described by

x(s;v) = y(s) + vg(s); jg(s)j = 1; a < s < b (7.10)

Figure 7.7: A pair of hyperbolas representing the cylinder with orientation (roughly � 1 =
� 2 = 1=

p
2 ; � 3 = 0) shown on the left. The � are the \handles" for changingorientation in

the software usedand have no signi�cane here.
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Figure 7.8: Two hyperbolas , one coincident with the �X 3 axis, representing the cylinder
shown on the left.

a nice examplebeing the developablehelicoid

x1 = acoss � avsins ; x2 = asin s + avcoss; ; x3 = b(s + v) : (7.11)

Figure 7.9: A generalcylinder illustrating the developable$ curve duality with the ruling
formed by cuspstransforming to an in
e ction point in each of the representing curves.
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Figure 7.10: The two leavesof the surfacein the previous �gure are extendedallowing for
a bitangentplane, tangent to two rulings, represented by a crossingpoint together with the
in
ection points in each of the representing curves.

7.3 Ruled Surfaces

A famousruled surfaceis the Moebiusstrip described by:

x = y(� ) + vg(� ) ; � 1
2 < v 1

2 ; (7.12)

y(� ) = (cos� )ê1 + (sin � )ê2 ;

g(� ) = (sin 1
2 � cos� )ê1 + (sin 1

2 � sin � )ê2 + (cos1
2 � )ê3 :

X

Y

Z u

X

Y

Z

Figure 7.11: A circular conewithout tangent planesparallel to the line u is represented by
two ellipses.The two points, oneon each ellipse,represent oneof the tangent planes.
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This is a non-orientablesurfacefor the unit normal of a point changesits senseas the point
traversesaround the circle y = cos� ê1 + sin � ê2 ([?] p. 170). Below are someFigs. of
a traversal on the Moebius strip corresponding to the circle, and its representation in k-
coords for various orientations. MAJOR THANKS AND ACKNOWLEDGEMENTS TO
CHAO-KUEI HUNG AND DAVID ADJIASHVILI FOR THESE FIGURES

7.4 Conclusions & Future Work

F or the classesof smooth surfacesstudied the representation is unique. That is, the surface
� can be reconstructedfrom its two representing planar regions. Recall from the hypercube
examplethat the the generalizationto hyper-surfacesRN is direct and immediate consisting
of N � 1 linked regions. ALL surfacescan be immediately recognizedfrom the regions
representing them. As we pointed out developable surfacescan be non-trivial. This is
also holds for ruled surfacesand quadrics which can be recognizedby the conical regions
representing them. For another, the prospect of transforming the description and designof
surfacesinto a planar problem without loss of information is exciting. Perhapsmore so in
treating the approximation of surfacesone can equivalently treat the approximation of the
corresponding planar regions. Earlier [13] it was shown that families of proximate planesin
R3 are represented by 2 convex hexagonswhoseshape and sizecompletely characterizethe
speci�c collection of planes. Conversely, this is also a characterization of \nearly" planar
surfaces. Recall the easy representation of general developable surfacesby curves rather
than regions. We surmisethat in k-coords thin curved strips represent families of \nearly")
developable surfaces. Similar observations can be made about \nearly" quadric surfaces.
Theseremarkstogether revisiting the intutiv e picture of the hypercube Fig. 7 shouldshows
the power and potential of this representation.

Figure 7.12: Another conewithout tangent planesparallel to u is represented by two ellipses
onecollapsingto a line segment.
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Figure 7.13: A circular conewith one tangent plane parallel to the line u is represented by
two parabolas. The two points, oneon each parabola, represent oneof the tangent planes.

We proposenext to develop these ideasand bring them to a stagewhere they can be
conveniently used. This should include an e�cien t algorithm for the construction of interior
points for these surfaces. This is will substantially increasethe variety and scope of the
Models (MS) that can be constructedfor ProcessControl and DecisionSupport and which
was the point of departure for this work. As an illustration an examplebasedon ellipsoids

Figure 7.14: A circular conewith one tangent plane parallel to the line u is represented by
two parabolasonecollapsingto a half-line.
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Figure 7.15: A circular conewith two tangent planesparallel to the line u is represented by
two hyperbolas. The two points, oneon each hyperbola, represent oneof the tangent planes.

Figure 7.16: Circular conewith two tangent planesparallel to the line u is represented by
two hyperbolas oneof them collapsingto a line.
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Figure 7.17: DevelopableHelicoid and its representation for the orientation shown. The two
points on right represent the tangent plane on the right.

Figure 7.18: DevelopableHelicoid and its representation for the orientation shown. The two
points on right represent the tangent plane on the right.

is shown in Fig. 7.25 modeling a processprocesswith 20 parameters. A feasiblestate of
the processis any interior point such as that shown by the polygonal line. As a result
of the constraints applied one-by-one on the parametersthe available rangesof remaining
parameters decreaseand are shown by the intermediate curves between the axes. The
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Figure 7.19: The saddle{ a doubly-ruled surface.

very restricted rangesfor X 13; X 14; X 15 show that theseare the \critical parameters" for
this state; where the point is \bumping" the boundary. We would like to be able to such
constructions and interpretations with models of much more complex processesusing the
classof surfacesstudied here.
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Figure 7.21: One of the two hyperbolic regionsrepresenting a spherein R3.
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Figure 7.22: One traversalaround a Moebiusstrip. Note the persistent intersectionbetween
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Figure 7.23: One traversalaround a Moebiusstrip. Note the persistent intersectionbetween
two pairs of curves. Is that characteristic of non-orientabilit y?

Figure 7.24: One traversalaround a Moebiusstrip. Note the persistent intersectionbetween
two pairs of curves. Is that characteristic of non-orientabilit y?
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state of the system.
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