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The CUR decomposition

O(1) columns
O(1) rows

Carefully 
chosen U

Goal: make (some norm) of A-CUR small.

Why? Given a sample consisting of a few 
columns (C) and a few rows (R) of A, we can 
compute U and “reconstruct” A as CUR.

If the sam pling probabilities are not “too 
bad”, w e get provably good accuracy.

Why? After making two passes over A, 
we can compute provably good C, U, and 
R and store them  (“sketch”) instead of 
A: O(m+n) vs. O(mn) RAM space. 

Why? Given sufficient time, we can find C, U 
and R such that A – CUR is almost optimal.

This might lead to improved data 
interpretation.



Overview

• Background & Motivation

• Relative error CX and CUR

• Open problems



Singular Value Decomposition (SVD)

Exact computation of the SVD takes O(min{mn2 , m2n}) time. 

The top k left/right singular vectors/values can be computed faster using 
Lanczos/Arnoldi methods.

:rank of A

U (V): orthogonal matrix containing the left (right) singular vectors of A.

S: diagonal matrix containing the singular values of A.



Singular Value Decomposition (SVD)

Pseudoinverse of A:

A+ = V S-1 UT

:rank of A

U (V): orthogonal matrix containing the left (right) singular vectors of A.

S: diagonal matrix containing the singular values of A.



Rank k approximations (Ak)

Ak is a matrix of rank k such that ||A-Ak||F is minimized over all rank k matrices.

Uk (Vk): orthogonal matrix containing the top k left (right) singular vectors of A.

S k: diagonal matrix containing the top k singular values of A.

Definition:



Uk and Vk

Uk (Vk): orthogonal matrix containing the top k left (right) singular vectors of A.

S k: diagonal matrix containing the top k singular values of A.

The rows of Vk
T are 

linear combinations of 
all rows of A

The columns of Uk are 
linear combinations of 

all columns of A



Potential problems with SVD

Structure in the data is not respected by mathematical operations on the data:   
• Reification - maximum variance directions are just that.
• Interpretability - what does a linear combination of 6000 genes mean.
• Sparsity - is destroyed by orthogonalization.
• Non-negativity - is a convex and not linear algebraic notion.

Do there exist  “better” low -rank matrix approximations?
• “better” structural properties for certain applications.
• “better” at respecting relevant structure.
• “better” for interpretability and informing intuition.



CUR for data interpretation
Exploit structural properties of CUR to analyze human genomic data:

We seek subjects and SNPs that capture most of the diversity in the data:

• Singular vectors are useless; linear combinations of humans and/or SNPs make no 
biological sense. 

• CUR extracts a low-dimensional representation in terms of subjects and SNPs.

Human genomic data: Paschou (Y ale U ), M ahoney (Y ahoo! R esearch),… , K idd (Y ale U ), &  D . ’0 6 .

The data sets are not very large: 
low-poly(m,n) time is acceptable.m

subjects

n loci in the genome 
(SNPs)



Prior work: additive error CUR
(D . &  Kannan ’03, D ., M ahoney, &  Kannan ’05)

Let Ak be the “best” rank k approxim ation to A . T hen, after two passes through 
A, we can pick O(k/4) rows and O(k/4) columns, such that

Additive error is prohibitively large in data analysis applications! 

T his “coarse” CU R  does not capture the relevant structure in the data. 



Theorem: relative error CUR
(D ., M ahoney, &  M uthukrishnan ’05, ’06)

For any k, O(SVDk(A)) time suffices to construct C, U, and R s.t.

holds with probability at least 1-, by picking

O( k log k log(1/) / 2 ) columns, and

O( k log2k log(1/) / 6 ) rows.

O(SVDk(A)): time to compute the top k left/right singular vectors and values of A.



Applications: relative error CUR

For (small) k, in O(SVDk(A)) time we can construct C, U, and R s.t.

by typically picking at most (k+5) columns and at most (k+5) rows.

Evaluation on:

• Microarray data (yeast), a (roughly) 6200 £ 24 matrix. (from O. Alter, UT Austin)

• Genetic marker data, 38 matrices, each (roughly) 60 £ 65 (with P. Paschou, Yale U.)

• HapMap SNP data, 4 matrices, each (roughly) 70 £ 800 (with P. Paschou, Yale U.)



CX matrix decompositions

1. How do we draw the columns of A to include in C? 

2. How do we construct X?  One possibility is

Create an approximation 
to A using columns of A

c=O(1) columns

Goal: Provide almost optimal bounds for some norm of A – CX.



Subspace sampling

Uk (Vk): orthogonal matrix containing the 
top k left (right) singular vectors of A.

S k: diagonal matrix containing the top k 
singular values of A.



Subspace sampling

Note: The columns of Vk are orthonormal vectors, BUT

the rows of Vk (notation: (Vk)(i)) are not orthonormal vectors.

Vk: orthogonal matrix containing the top 
k left (right) singular vectors of A.

Subspace sampling in O(SVDk(A)) time 



Relative-error CX decomposition

Relative-error CX decomposition

• Compute the probabilities pi; 

• F or each i = 1,2,… ,n, pick the i-th column of A with probability min{1,cpi}

• Let C be the matrix containing the sampled columns; 

(C has ·c columns in expectation)

Theorem: For any k, let Ak be the “best” rank k approxim ation to A . 

In O(SVDk(A)) we can compute pi such that if c = O(k log k / 2) then, 
with probability at least 1-,



Inside subspace sampling

Let C = AS, where S is a sampling/rescaling matrix and let the SVD 
of A be A = UA SA VA

T. Then,



Submatrices of orthogonal matrices

Important observation: our subspace sampling probabilities guarantee that 
SVA is a full-rank, approx. orthogonal matrix:

(SVA)T (SVA) ¼ I.

(Frieze, Kannan, V em pala ’98, D ., Kannan, M ahoney ’01, 04’, R udelson, V irshyin ’05 and even  
earlier by Bourgain, Kashin, and Tzafriri using uniform sampling.)

This property allows us to completely capture the subspace spanned by 
the top k right singular vectors of A.



Relative-error CX & low-rank approximations

November 2005: Drineas, Mahoney, and Muthukrishnan 
• First relative-error CX matrix factorization algorithm.

• O(SVDk(A)) time and O(k2) columns.

January 2006: Har-Peled
• O(mn k2 log k) - “linear in m n” tim e to get 1+approximation.

March 2006: Deshpande and Vempala
• O(k log k) passes, O(Mk2) time and O(k log k) columns.

April 2006: Drineas, Mahoney, and Muthukrishnan
• Improved the DMM November 2005 result to O(k log k) columns.

April 2006: Sarlos
• Relative-error low-rank approximation in just two passes with O(k log k) columns, 

after some preprocessing. 



Relative-error CUR decomposition

1. How do we draw the columns and rows of A to include in C and R? 

2. How do we construct U?

Create an approximation 
to A, using rows and 
columns of A

O(1) columns
O(1) rows

Carefully 
chosen U

Goal: Provide very good bounds for some norm of A – CUR. 



Step 1: subspace sampling for C

Relative-error CX decomposition (given A, construct C)

• Compute the probabilities pi; 

• F or each i = 1,2,… ,n, pick the i-th column of A with probability min{1,cpi}

• Let C be the matrix containing the sampled columns; 

(C has ·c columns in expectation)



Subspace sampling for R

UC : orthogonal matrix containing the left singular vectors of C.

:rank of C.

Let (UC)(i) denote the i-th row of U.



Subspace sampling for R

UC : orthogonal matrix containing the left singular vectors of C.

:rank of C.

Let (UC)(i) denote the i-th row of U.

Subspace sampling in O(c2m) time



Step 2: constructing U and R

Relative-error CX decomposition (given A, construct C)

• Compute the probabilities pi; 

• F or each i = 1,2,… ,n, pick the i-th column of A with probability min{1,cpi};

• Let C be the matrix containing the sampled columns; 

(C has ·c columns in expectation)

CUR Algorithm (given A and C, return U and R)

• Compute the probabilities qi;

• F or each i = 1,2,… ,m  pick the i-th row of A with probability min{1,rqi};

• Let R be the matrix containing the sampled rows;

• Let W be the intersection of C and R;

• Let U be a (rescaled) pseudo-inverse of W;

(R has · r rows in expectation)



Overall decomposition

columns of A

rows of A

”intersection” 
of C and R

diagonal rescaling 
matrix



Analyzing Step 2 of CUR

Theorem: Given C, in O(c2m) time, we can compute qi such that

holds with probability at least 1-, if r= O(c log c / 2) rows.

CUR Algorithm (given A and C, return U and R)

• Compute the probabilities qi;

• F or each i = 1,2,… ,m  pick the i-th row of A with probability min{1,rqi};

• Let R be the matrix containing the sampled rows;

• Let W be the intersection of C and R;

• Let U be a (rescaled) pseudo-inverse of W;

(R has · r rows in expectation)



Putting the two theorems together

Thm 2: Given A and C, in O(c2m) time, we can pick (in expectation) r = 
O(c log c /2) rows of A such that, with probability at least 1-,

Thm 1: For any k, let Ak be the “best” rank k approxim ation to A . 

Then, in O(SVDk(A)) we can pick (in expectation) c = O(k log k / 2) 
columns of A such that, with probability at least 1-,



Relative error CUR

For any k, O(SVDk(A)) time suffices to construct C, U, and R s.t.

holds with probability at least 1-, by picking

O( k log k / 2 ) columns, and

O( k log2k / 6 ) rows.



CUR decompositions: a summary

G.W. Stewart
(N um . M ath. ’9 9 , T R  ’0 4  )

C: variant of the QR algorithm
R: variant of the QR algorithm
U: minimizes ||A-CUR||F

No a priori bounds
Solid experimental performance

Goreinov, Tyrtyshnikov, & 
Zamarashkin

(LA A  ’9 7 , Cont. M ath. ’0 1)

C: columns that span max volume
U: W+

R: rows that span max volume

Existential result
Error bounds depend on ||W+||2

Spectral norm bounds!
Williams & Seeger

(N IPS  ’0 1)
C: uniformly at random
U: W+

R: uniformly at random

Experimental evaluation
A is assumed PSD
Connections to Nystrom method

D., Kannan, & Mahoney
(S O D A  ’0 3 , ’0 4 )

C: w.r.t. column lengths
U: in linear/constant time
R: w.r.t. row lengths

Randomized algorithm
Provable, a priori, bounds
Explicit dependency on A – Ak

D., Mahoney, & Muthukrishnan
(’05 , ’0 6 )

C: depends on singular vectors of A. 
U: (almost) W+

R: depends on singular vectors of C

(1+) approximation to A – Ak

Computable in SVDk(A) time.



Open problem

Is it possible to construct a CUR decomposition satisfying bounds similar to 
ours deterministically?

• G u and E isenstat, “E fficient algorithm s for com puting a strong rank-
revealing Q R  factorization”, S IA M  J . S ci. Com puting, 199 6 .

Main algorithm: there exist k columns of A, forming a matrix C, such that 
the sm allest singular value of C is “large”.

We can find such columns in O(mn2) time deterministically !


