

Subspace sampling and relative-error matrix approximation

Petros Drineas

Rensselaer Polytechnic Institute Computer Science Department

(joint work with M. W. Mahoney)

For papers, etc.

YAHOO! drineas

The CUR decomposition

Goal: make (some norm) of A-CUR small.

we can compute provably good C, U, and R and store them ("sketch") instead of A: O(m+n) vs. O(mn) RAM space.

Why? Given a sample consisting of a few columns (C) and a few rows (R) of A, we can compute U and "reconstruct" A as CUR.

If the sampling probabilities are not "too bad", we get provably good accuracy.

Why? Given sufficient time, we can find C, U and R such that A - CUR is almost optimal.

This might lead to improved data interpretation.

Overview

- Background & Motivation
- Relative error CX and CUR
- Open problems

Singular Value Decomposition (SVD)

$$\begin{pmatrix} A \\ m \times n \end{pmatrix} = \begin{pmatrix} U \\ m \times \rho \end{pmatrix} \cdot \begin{pmatrix} \Sigma \\ \rho \times \rho \end{pmatrix} \cdot \begin{pmatrix} V \\ \rho \times n \end{pmatrix}^{T}$$

: rank of A

U (V): orthogonal matrix containing the left (right) singular vectors of A.

S: diagonal matrix containing the singular values of A.

Exact computation of the SVD takes $O(min\{mn^2, m^2n\})$ time.

The top k left/right singular vectors/values can be computed faster using Lanczos/Arnoldi methods.

Singular Value Decomposition (SVD)

$$\begin{pmatrix} A \\ m \times n \end{pmatrix} = \begin{pmatrix} U \\ m \times \rho \end{pmatrix} \cdot \begin{pmatrix} \Sigma \\ \rho \times \rho \end{pmatrix} \cdot \begin{pmatrix} V \\ \rho \times n \end{pmatrix}^{T}$$

: rank of A

U (V): orthogonal matrix containing the left (right) singular vectors of A.

S: diagonal matrix containing the singular values of A.

Pseudoinverse of A:

$$A^{+} = V S^{-1} U^{T}$$

Rank k approximations (A_k)

$$\begin{pmatrix} A_k \\ m \times n \end{pmatrix} = \begin{pmatrix} U_k \\ m \times k \end{pmatrix} \cdot \begin{pmatrix} \Sigma_k \\ k \times k \end{pmatrix} \cdot \begin{pmatrix} V_k^T \\ k \times n \end{pmatrix}$$

 $U_k(V_k)$: orthogonal matrix containing the top k left (right) singular vectors of A.

 S_k : diagonal matrix containing the top k singular values of A.

 A_k is a matrix of rank k such that $||A-A_k||_F$ is minimized over all rank k matrices.

Definition:
$$||A||_F^2 = \sum_{i,j} A_{ij}^2$$

U_k and V_k

$$\begin{pmatrix} A_k \\ m \times n \end{pmatrix} = \begin{pmatrix} U_k \\ m \times k \end{pmatrix} \cdot \begin{pmatrix} \Sigma_k \\ k \times k \end{pmatrix} \cdot \begin{pmatrix} V_k^T \\ k \times n \end{pmatrix}$$
The rows of V_k^T are linear combinations of all rows of A

The columns of U_k are linear combinations of <u>all columns</u> of A

 $U_k(V_k)$: orthogonal matrix containing the top k left (right) singular vectors of A.

 S_k : diagonal matrix containing the top k singular values of A.

Potential problems with SVD

Structure in the data is *not* respected by mathematical operations on the data:

- · Reification maximum variance directions are just that.
- Interpretability what does a linear combination of 6000 genes mean.
- Sparsity is destroyed by orthogonalization.
- Non-negativity is a convex and not linear algebraic notion.

Do there exist "better" low-rank matrix approximations?

- "better" structural properties for certain applications.
- "better" at respecting relevant structure.
- "better" for interpretability and informing intuition.

CUR for data interpretation

Exploit structural properties of CUR to analyze human genomic data:

$$\begin{array}{c}
n \text{ loci in the genome} \\
(SNPs)
\end{array}$$

$$\begin{array}{c}
m \\
\text{subjects}
\end{array}$$

$$A$$

$$\approx$$

$$C$$

$$C$$

$$U$$

$$V$$

$$C$$

$$V$$

We seek subjects and SNPs that capture most of the diversity in the data:

- Singular vectors are useless; linear combinations of humans and/or SNPs make no biological sense.
- CUR extracts a low-dimensional representation in terms of subjects and SNPs.

Human genomic data: Paschou (Yale U), Mahoney (Yahoo! Research),..., Kidd (Yale U), & D. '06.

Prior work: additive error CUR

(D. & Kannan '03, D., Mahoney, & Kannan '05)

Let A_k be the "best" rank k approximation to A. Then, after two passes through A, we can pick O(k/4) rows and O(k/4) columns, such that

$$||A - CUR||_F \le (||A - A_k||_F + \varepsilon ||A||_F) >> ||A - A_k||_F$$

Additive error is prohibitively large in data analysis applications!

This "coarse" CUR does not capture the relevant structure in the data.

Theorem: relative error CUR

(D., Mahoney, & Muthukrishnan '05, '06)

For any k, $O(SVD_k(A))$ time suffices to construct C, U, and R s.t.

$$||A - CUR||_F \le (1 + \varepsilon) ||A - U_k \Sigma_k V_k^T||_F$$

$$= (1 + \varepsilon) ||A - A_k||_F$$

holds with probability at least 1-, by picking

$$O(k \log k \log(1/) / ^2)$$
 columns, and $O(k \log^2 k \log(1/) / ^6)$ rows.

 $O(SVD_k(A))$: time to compute the top k left/right singular vectors and values of A.

Applications: relative error CUR

Evaluation on:

- Microarray data (yeast), a (roughly) 6200 £ 24 matrix. (from O. Alter, UT Austin)
- Genetic marker data, 38 matrices, each (roughly) 60 £ 65 (with P. Paschou, Yale U.)
- · HapMap SNP data, 4 matrices, each (roughly) 70 £ 800 (with P. Paschou, Yale U.)

For (small) k, in $O(SVD_k(A))$ time we can construct C, U, and R s.t.

$$||A - CUR||_F \le (1 + .001) ||A - A_k||_F$$

by typically picking at most (k+5) columns and at most (k+5) rows.

CX matrix decompositions

Create an approximation to A using columns of A
$$\begin{pmatrix} A & \\ & \\ & \end{pmatrix} \approx \begin{pmatrix} C & \\ & \\ & \\ & \end{pmatrix}$$

$$c=O(1) \text{ columns}$$

Goal: Provide almost optimal bounds for some norm of A - CX.

- How do we draw the columns of A to include in C?
- 2. How do we construct X? One possibility is

$$\min_{X \in \mathcal{R}^{c \times n}} ||A - CX||_F = ||A - C(C^+A)||_F$$

Subspace sampling

$$\begin{pmatrix} A_k \\ m \times n \end{pmatrix} = \begin{pmatrix} U_k \\ m \times k \end{pmatrix} \cdot \begin{pmatrix} \Sigma_k \\ k \times k \end{pmatrix} \cdot \begin{pmatrix} V_k^T \\ k \times n \end{pmatrix}$$

 U_k (V_k): orthogonal matrix containing the top k left (right) singular vectors of A.

 S_k : diagonal matrix containing the top k singular values of A.

Subspace sampling

$$\begin{pmatrix} V_k \\ n \times k \end{pmatrix}$$

 V_k : orthogonal matrix containing the top k left (right) singular vectors of A.

The columns of V_k are orthonormal vectors, **BUT** Note: the rows of V_k (notation: $(V_k)_{(i)}$) are not orthonormal vectors.

Subspace sampling in $O(SVD_k(A))$ time

$$\forall i = 1, 2, ..., n$$
 $p_i = \frac{\|(V_k)_{(i)}\|_2^2}{k}$

Relative-error CX decomposition

Relative-error CX decomposition

- Compute the probabilities p_i;
- For each i = 1,2,...,n, pick the i-th column of A with probability min{1,cp_i}
- Let C be the matrix containing the sampled columns;

(C has 'c columns in expectation)

Theorem: For any k, let A_k be the "best" rank k approximation to A.

In $O(SVD_k(A))$ we can compute p_i such that if $c = O(k \log k / 2)$ then, with probability at least 1-,

$$\min_{X \in \mathcal{R}^{\tilde{c} \times n}} ||A - CX||_F = ||A - CC^{+}A||_F$$

$$\leq (1 + \varepsilon)||A - A_k||_F$$

Inside subspace sampling

Let C = AS, where S is a sampling/rescaling matrix and let the SVD of A be $A = U_A S_A V_A^T$. Then,

$$A - C(C^{+}A) = A - AS(AS)^{+}A$$
$$= A - U_{A}\Sigma_{A}V_{A}^{T}S(U_{A}\Sigma_{A}V_{A}^{T}S)^{+}A$$

$$\|A - C(C^{+}A)\|_{F} = \|\Sigma_{A} - \Sigma_{A}V_{A}^{T}S(\Sigma_{A}V_{A}^{T}S)^{+}\Sigma_{A}\|_{F}$$

Submatrices of orthogonal matrices

Important observation: our subspace sampling probabilities guarantee that SV_A is a full-rank, approx. orthogonal matrix:

$$(SV_A)^T (SV_A) \% I.$$

(Frieze, Kannan, Vempala '98, D., Kannan, Mahoney '01, 04', Rudelson, Virshyin '05 and even earlier by Bourgain, Kashin, and Tzafriri using uniform sampling.)

This property allows us to **completely capture** the subspace spanned by the top k right singular vectors of A.

Relative-error CX & low-rank approximations

November 2005: Drineas, Mahoney, and Muthukrishnan

- First relative-error CX matrix factorization algorithm.
- $O(SVD_k(A))$ time and $O(k^2)$ columns.

January 2006: Har-Peled

• $O(mn k^2 log k)$ - "linear in mn" time to get 1+ approximation.

March 2006: Deshpande and Vempala

• $O(k \log k)$ passes, $O(Mk^2)$ time and $O(k \log k)$ columns.

April 2006: Drineas, Mahoney, and Muthukrishnan

Improved the DMM November 2005 result to O(k log k) columns.

April 2006: Sarlos

 Relative-error low-rank approximation in just two passes with O(k log k) columns, after some preprocessing.

Relative-error CUR decomposition

Provide very good bounds for some norm of A - CUR. Goal:

- How do we draw the columns and rows of A to include in C and R?
- 2. How do we construct U?

Step 1: subspace sampling for C

Relative-error CX decomposition (given A, construct C)

- Compute the probabilities p_i;
- For each i = 1,2,...,n, pick the i-th column of A with probability min{1,cp_i}
- Let C be the matrix containing the sampled columns;

(C has 'c columns in expectation)

Subspace sampling for R

$$\begin{pmatrix} C \\ \end{pmatrix} = \begin{pmatrix} U_C \\ \end{pmatrix} \cdot \begin{pmatrix} \Sigma_C \\ \end{pmatrix} \cdot \begin{pmatrix} V_C \\ \end{pmatrix}^T$$

$$m \times \tilde{c} \qquad m \times \rho \qquad \rho \times \rho \qquad \rho \times \tilde{c}$$

 U_c : orthogonal matrix containing the left singular vectors of C.

: rank of C.

Let $(U_c)_{(i)}$ denote the i-th row of U.

Subspace sampling for R

$$\left(egin{array}{c} U_C \ m imes
ho \end{array}
ight)$$

 U_c : orthogonal matrix containing the left singular vectors of C.

: rank of C.

Let $(U_c)_{(i)}$ denote the i-th row of U.

Subspace sampling in O(c2m) time

$$\forall i = 1, 2, ..., m$$
 $q_i = \frac{\|(U_C)_{(i)}\|_2^2}{\rho}$

Step 2: constructing U and R

Relative-error CX decomposition (given A, construct C)

- Compute the probabilities p_i;
- For each i = 1,2,...,n, pick the i-th column of A with probability min{1,cp_i};
- Let C be the matrix containing the sampled columns;

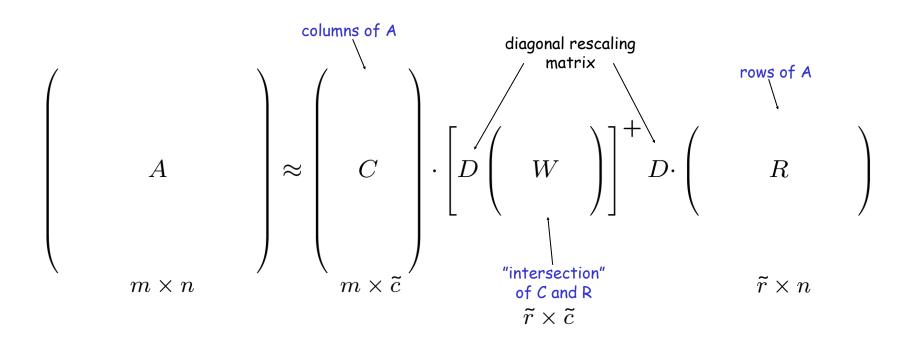
(C has 'c columns in expectation)

CUR Algorithm (given A and C, return U and R)

- Compute the probabilities q_i;
- For each i = 1,2,...,m pick the i-th row of A with probability min $\{1,rq_i\}$;
- Let R be the matrix containing the sampled rows;
- Let W be the intersection of C and R;
- Let U be a (rescaled) pseudo-inverse of W;

(R has 'r rows in expectation)

Overall decomposition



Analyzing Step 2 of CUR

CUR Algorithm (given A and C, return U and R)

- · Compute the probabilities q;
- For each i = 1,2,...,m pick the i-th row of A with probability min $\{1,rq_i\}$;
- Let R be the matrix containing the sampled rows;
- Let W be the intersection of C and R:
- Let U be a (rescaled) pseudo-inverse of W;

(R has 'r rows in expectation)

Theorem: Given C, in $O(c^2m)$ time, we can compute q_i such that

$$\left\|A - C\underbrace{(DW)^{+}D}_{U}R\right\|_{F} \leq (1 + \epsilon)\left\|A - C(C^{+}A)\right\|_{F}$$

holds with probability at least 1-, if $r = O(c \log c / ^2)$ rows.

Putting the two theorems together

Thm 1: For any k, let A_k be the "best" rank k approximation to A.

Then, in $O(SVD_k(A))$ we can pick (in expectation) $c = O(k \log k / 2)$ columns of A such that, with probability at least 1-,

$$||A - C(C^{+}A)A||_{F} \le (1+\varepsilon)||A - A_{k}||_{F}$$

Thm 2: Given A and C, in $O(c^2m)$ time, we can pick (in expectation) $r = O(c \log c / ^2)$ rows of A such that, with probability at least 1-,

$$\left\|A - C\underbrace{(DW)^{+}D}_{U}R\right\|_{F} \leq (1 + \epsilon)\left\|A - C(C^{+}A)A\right\|_{F}$$

Relative error CUR

For any k, $O(SVD_k(A))$ time suffices to construct C, U, and R s.t.

$$\left\|A - C(\underline{DW})^{+}\underline{D}R\right\|_{F} \leq (1+\varepsilon)\|A - A_{k}\|_{F}$$

holds with probability at least 1- , by picking

O(k log k / 2) columns, and
O(k log2k / 6) rows.

CUR decompositions: a summary

G.W. Stewart (Num. Math. '99, TR '04)	C: variant of the QR algorithm R: variant of the QR algorithm U: minimizes A-CUR _F	No a priori bounds Solid experimental performance
Goreinov, Tyrtyshnikov, & Zamarashkin (LAA '97, Cont. Math. '01)	C: columns that span max volume U: W+ R: rows that span max volume	Existential result Error bounds depend on W ⁺ ₂ Spectral norm bounds!
Williams & Seeger (NIPS '01)	C: uniformly at random U: W+ R: uniformly at random	Experimental evaluation A is assumed PSD Connections to Nystrom method
D., Kannan, & Mahoney (SODA '03, '04)	C: w.r.t. column lengths U: in linear/constant time R: w.r.t. row lengths	Randomized algorithm Provable, a priori, bounds Explicit dependency on A - A _k
D., Mahoney, & Muthukrishnan ('05, '06)	C: depends on singular vectors of A. U: (almost) W ⁺ R: depends on singular vectors of C	(1+) approximation to $A - A_k$ Computable in $SVD_k(A)$ time.

Open problem

Is it possible to construct a CUR decomposition satisfying bounds similar to ours deterministically?

• Gu and Eisenstat, "Efficient algorithms for computing a strong rank-revealing QR factorization", SIAM J. Sci. Computing, 1996.

Main algorithm: there exist k columns of A, forming a matrix C, such that the smallest singular value of C is "large".

We can find such columns in $O(mn^2)$ time deterministically!