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) The CUR decomposi

Carefully
chosen U

A zc.(g).(ﬂ,

mxn O(1) rows
O(1) columns

Why? Given a sample consisting of a few
columns (C) and a few rows (R) of A, we can
compute U and "reconstruct” A as CUR.

If the sampling probabilities are not “too
bad", we get provably good accuracy.

tion

Goal: make (some norm) of A-CUR small.

|

Why? After making two passes over A,
we can compute provably good C, U, and
R and store them ("sketch") instead of
A: O(m+n) vs. O(mn) RAM space.

Why? Given sufficient time, we can find C, U
and R such that A - CUR is almost optimal.

This might lead to improved data
intferpretation.



) Overview

» Background & Motivation

- Relative error CX and CUR

- Open problems



) Singular Value Decomposition (SVD)

m X n m X p P Xp P XN
: rank of A
U (V): orthogonal matrix containing the left (right) singular vectors of A.

S: diagonal matrix containing the singular values of A.

Exact computation of the SVD takes O(min{mn? , m?n}) time.

The top k left/right singular vectors/values can be computed faster using
Lanczos/Arnoldi methods.



) Singular Value Decomposition (SVD)

m X n m X p P Xp P XN

: rank of A
U (V): orthogonal matrix containing the left (right) singular vectors of A.

S: diagonal matrix containing the singular values of A.

Pseudoinverse of A:
A*=VSTUT



) Rank k approximations (A,)

aw =] w ( . )( v )

m X n m X k k Xk kxXmn

Uy (V,): orthogonal matrix containing the top k left (right) singular vectors of A.

S diagonal matrix containing the top k singular values of A.

A, is a matrix of rank k such that [|A-A,||ris minimized over all rank k matrices.

Definition: ||A||12:’ — Zi,j A'L'Qj



_ - . T The rows of V, " are
Ay, - Uy, ( 2y ) ( Vk ) linear combinations of
all rows of A

m X n ‘mxk, k X k kxXmn

The columns of U, are
linear combinations of
all columns of A

Uy (V,): orthogonal matrix containing the top k left (right) singular vectors of A.

S diagonal matrix containing the top k singular values of A.



) Potential problems with SVD

Structure in the data is not respected by mathematical operations on the data:
- Reification - maximum variance directions are just that.

* Interpretability - what does a linear combination of 6000 genes mean.

* Sparsity - is destroyed by orthogonalization.

* Non-negativity - is a convex and not linear algebraic notion.

Do there exist "better” low-rank matrix approximations?
- "better” structural properties for certain applications.

* "better” at respecting relevant structure.

* "better” for interpretability and informing intuition.



) CUR for data interpretation

Exploit structural properties of CUR to analyze human genomic data:

n loci in the genome
(SNPs)

m
subjects

The data sets are not very large:
S ( u ) ' ( R ) low-poly(m,n) time is acceptable.

We seek subjects and SNPs that capture most of the diversity in the data:

» Singular vectors are useless; linear combinations of humans and/or SNPs make no
biological sense.

* CUR extracts a low-dimensional representation in terms of subjects and SNPs.

Human genomic data: Paschou (Yale U), Mahoney (Yahoo! Research),..., Kidd (Yale U), & D. '06.



Prior work: additive error CUR

) (D. & Kannan '03, D., Mahoney, & Kannan '05)

Let A, be the "best” rank k approximation to A. Then, after two passes through
A, we can pick O(k/ #) rows and O(k/ #) columns, such that

|4~ CURIp <A~ Agllp + el ATD>> 14~ Aule

Additive error is prohibitively large in data analysis applications!

This "coarse” CUR does not capture the relevant structure in the data.



Theorem: relative error CUR

) (D., Mahoney, & Muthukrishnan ‘05, '06)

For any k, O(SVD,(A)) time suffices to cons

ct C,U,and R s.1.

O,

(1+¢e)||A—Akllp

holds with probability at least 1- , by picking
O(k log k log(1/ )/ 2) columns, and
O( k log®k log(1/ )/ ©) rows.

O(SVD(A)): time to compute the top k left/right singular vectors and values of A.



) Applications: relative error CUR

Evaluation on:

* Microarray data (yeast), a (roughly) 6200 £ 24 matrix. (from O. Alter, UT Austin)
* Genetic marker data, 38 matrices, each (roughly) 60 £ 65 (with P. Paschou, Yale U.)
* HapMap SNP data, 4 matrices, each (roughly) 70 £ 800 (with P. Paschou, Yale U.)

For (small) k, in O(SVD,(A)) time we can construct C, U, and R s.t.

|A—-CUR[p < (1+4.001)[|A - Agllp

by typically picking at most (k+5) columns and at most (k+5) rows.



‘ CX matrix decompositions

I

Create an approximation
to A using columns of A A c ( X )

c=0(1) columns
Goal: Provide almost optimal bounds for some norm of A - CX.

1. How do we draw the columns of A to include in C?

2. How do we construct X? One possibility is

i _ — _ +
min lA=CX|lp = A= (CFA)lr



) Subspace sampling

Uy (V)): orthogonal matrix containing the
top k left (right) singular vectors of A.

A — Uy, ' ( 2k ) ) ( Vi ) S diagonal matrix containing the top k
singular values of A.

m X n m X k kX k kXxXn



) Subspace sampling

Vi Vi orthogonal matrix containing the top
k left (right) singular vectors of A.

n X k

Note: The columns of V| are orthonormal vectors, BUT

the rows of V| (notation: (V\)) are not orthonormal vectors.

Subspace sampling in O(SVD,(A)) time

2
2

H(Vk)(i)
k

Vi=1,2,...,n p; =



) Relative-error CX decomposition

Relative-error CX decomposition

- Compute the probabilities p;;

* Foreachi=12,..,n, pick the i-th column of A with probability min{1,cp;}
* Let C be the matrix containing the sampled columns;

(C has ¢ columns in expectation)
Theorem: For any k, let A, be the "best” rank k approximation to A.

In O(SVD,(A)) we can compute p; such that if ¢ = O(k log k / ?) then,
with probability at least 1-

min ||A—-CX||p

min |A~CCTA|lR

< (A+a)lA—-Allr



) Inside subspace sampling

Let C = AS, where S is a sampling/rescaling matrix and let the SVD
of Abe A=U,S, V,". Then,

A-C(CTA) = A—AS(AS)T A

A—UsSAVAS (Uax AVES)J“ A

HA—C(CWLA) — “ZA—ZAVES(ZAVES)JFZA“F

Ir



) Submatrices of orthogonal matrices

Important observation: our subspace sampling probabilities guarantee that
SV, is a full-rank, approx. orthogonal matrix:

(SV,)T (SV,) ¥a I.

(Frieze, Kannan, Vempala ‘98, D., Kannan, Mahoney ‘01, 04', Rudelson, Virshyin ‘05 and even
earlier by Bourgain, Kashin, and Tzafriri using uniform sampling.)

This property allows us o completely capture the subspace spanned by
the top k right singular vectors of A.



ilaﬂve—error CX & low-rank approximations

November 2005: Drineas, Mahoney, and Muthukrishnan

First relative-error CX matrix factorization algorithm.
O(SVD,(A)) time and O(k?) columns.

January 2006: Har-Peled

O(mn k? log k) - “linear in mn" time to get 1+ approximation.
March 2006: Deshpande and Vempala

O(k log k) passes, O(Mk?) time and O(k log k) columns.
April 2006: Drineas, Mahoney, and Muthukrishnan

Improved the DMM November 2005 result to O(k log k) columns.
April 2006: Sarlos

Relative-error low-rank approximation in just two passes with O(k log k) columns,
after some preprocessing.



) Relative-error CUR decomposition

Carefully

/ chosen U
Create an approximation
to A, using rows and A ~| © ( U )( R )
columns of A

O(1) rows
O(1) columns

Goal: Provide very good bounds for some norm of A - CUR.

1. How do we draw the columns and rows of A to include in C and R?

2. How do we construct U?



) Step 1: subspace sampling for C

Relative-error CX decomposition (given A, construct C)

- Compute the probabilities p;;
* Foreachi=12,..,n, pick the i-th column of A with probability min{1,cp;}
* Let C be the matrix containing the sampled columns;

(C has ¢ columns in expectation)



) Subspace sampling for R

m X € m X p pXp pXc

U, : orthogonal matrix containing the left singular vectors of ¢
: rank of C
Let (Uc)gy denote the i-th row of U.



) Subspace sampling for R

Uc
m X p

U, : orthogonal matrix containing the left singular vectors of ¢
: rank of C
Let (Uc)gy denote the i-th row of U.

Subspace sampling in O(c2m) time

2
2

Vi=1,2,...,m ¢ = H(Ucz(i)




) Step 2: constructing U and R

Relative-error CX decomposition (given A, construct C)

- Compute the probabilities p;;
* Foreachi=12,..,n, pick the i-th column of A with probability min{1,cp};
* Let C be the matrix containing the sampled columns;

(C has ¢ columns in expectation)

CUR Algorithm (given A and C, return U and R)
- Compute the probabilities g;;

* Foreachi=12,.. m pick the i-th row of A with probability min{1,rq;}
- Let R be the matrix containing the sampled rows;

* Let W be the intersection of C and R;

* Let U be a (rescaled) pseudo-inverse of W,

(R has * r rows in expectation)



) Overall decomposition

columns of A ) .
\ diagonal rgscalmg
( \ ( \ matrix rows\of A
/ X
PR O .D( w ) D.( i,
\ / \ ~ ) "in‘rerlec’rion" ~
m X n m X ¢ of Cand R rXn

rXcC



) Analyzing Step 2 of CUR

CUR Algorithm (given A and C, return U and R)
- Compute the probabilities q;;

* Foreachi=12,.. mpick the i-th row of A with probability min{1,rq}:
* Let R be the matrix containing the sampled rows:;

* Let W be the intersection of C and R;

* Let U be a (rescaled) pseudo-inverse of W;

(R has * r rows in expectation)

Theorem: Given C, in O(c®m) time, we can compute g; such that

A-C(DW)TDR| < (1+e|A-C(CctA)
U F

Ir

holds with probability at least 1- , if r= O(clog ¢/ 2) rows.



) Putting the two theorems together

Thm 1: For any k, let A, be the "best” rank k approximation to A.

Then, in O(SVD,(A)) we can pick (in expectation) c = O(k log k / ?)
columns of A such that, with probability at least 1-

lA-c(ctA)Alp < (A49)llA- Agllp

Thm 2: Given A and C, in O(c?m) time,we can pick (in expectation) r =
O(c log ¢ / 2) rows of A such that, with prabability at least 1-

A—-C(DW)TDR| < (1+€)HA_C(C+A)AHF
U F




) Relative error CUR

For any k, O(SVD,(A)) time suffices to construct C, U, and R s.1.

A—CDOW)TDR| < (1+¢)|A— Ay
U F

holds with probability at least 1- , by picking
O(klogk/ 2)columns, and
O(k log?k / ©) rows.



) CUR decompositions: a summary

G.W. Stewart
(Num. Math. '99, TR '04)

variant of the QR algorithm
variant of the QR algorithm

: minimizes ||A-CUR||¢

No a priori bounds
Solid experimental performance

Goreinov, Tyrtyshnikov, &
Zamarashkin

(LAA '97, Cont. Math. '01)

columns that span max volume

- W

rows that span max volume

Existential result
Error bounds depend on ||W*||,
Spectral norm bounds!

Williams & Seeger
(NIPS '01)

uniformly at random

s WH

uniformly at random

Experimental evaluation
A is assumed PSD
Connections to Nystrom method

D., Kannan, & Mahoney
(SODA '03,'04)

w.r.t. column lengths
in linear/constant time
w.r.t. row lengths

Randomized algorithm
Provable, a priori, bounds
Explicit dependency on A - A,

D., Mahoney, & Muthukrishnan
(05, '06)

U:
R:

QP CANPDCCONPTCCOCOO

depends on singular vectors of A.

(almost) W+
depends on singular vectors of C

(1+ ) approximation to A - A,
Computable in SVD,(A) time.




) Open problem

Is it possible to construct a CUR decomposition satisfying bounds similar to
ours deterministically?

» 6u and Eisenstat, "Efficient algorithms for computing a strong rank-
revealing QR factorization”, STAM J. Sci. Computing, 1996.

Main algorithm: there exist k columns of A, forming a matrix C, such that
the smallest singular value of C is "large”.

We can find such columns in O(mn?) time deterministically



